The weak and strong asymptotic equivalence relations and the generalized inverse*
Tóm tắt
Từ khóa
Tài liệu tham khảo
A.A. Balkema, J.L. Geluk, and L. de Haan, An extension of Karamata’s Tauberian theorem and its connection with complementary convex functions, Q. J. Math., Oxf. II. Ser., 30:385–416, 1979.
N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge, 1987.
V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, Properties of a subclass of Avakumović functions and their generalized inverses, Ukr. Math. Zh., 54(2):179–206, 2002.
V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, Some properties of asymptotic quasi-inverse function and their applications, I, Theory Probab. Math. Stat., 70:11–28, 2005.
V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, PRV property and the φ-asymptotic behavior of solutions of stochastic differential equations, Lith. Math. J., 47(4):361–378, 2007.
V.V. Buldygin, O.I. Klesov, and J.G. Steinebach, On some properties of asymptotically quasi-inverse functions, Teor. Imovirn. Mat. Stat., 77:13–27, 2007 (in Ukrainian). English transl.: Theory Probab. Math. Stat., 77:15–30, 2008.
L. de Haan, On Regular Variation and Its Applications to the Weak Convergence of Sample Extremes, Math. Centre Tracts, Vol. 32, CWI, Amsterdam, 1970.
D. Djurčić, Lj.D.R. Kočinac, and M.R. Žižović, Some properties of rapidly varying sequences, J. Math. Anal. Appl., 327:1297–1306, 2007.
D. Djurčić, Lj.D.R. Kočinac, and M.R. Žižović, A few remarks on divergent sequences: Rates of divergence II, J. Math. Anal. Appl., 367:705–709, 2010.
D. Djurčić, R. Nikolić, and A. Torgašev, The weak asymptotic equivalence and the generalized inverse, Lith. Math. J., 50(1):34–42, 2010.
D. Djurčić and A. Torgašev, Strong asymptotic equivalence and inversion of functions in the class K c , J. Math. Anal. Appl., 255:383–390, 2001.
D. Djurčić and A. Torgašev, Weak asymptotic equivalence and inverse functions in the class OR, Math. Morav., 7:1–6, 2003.
D. Djurčić and A. Torgašev, Some asymptotic relations for the generalized inverse, J. Math. Anal. Appl., 325:1397–1402, 2007.
D. Djurčić, A. Torgašev, and S. Ješić, The strong asymptotic equivalence and the generalized inverse, Siber. Math. J., 49(4):786–795, 2008.
J. Karamata, Sur un mode de croissance reguliere des fonctions, Mathematica (Cluj), 4:38–53, 1930.