The weak Gram law for Hecke $$ L $$ -functions

The Ramanujan Journal - Tập 60 - Trang 981-997 - 2022
Sebastian Weishäupl1
1Department of Mathematics, Würzburg University, Würzburg, Germany

Tóm tắt

We generalize a theorem by Titchmarsh about the mean value of Hardy’s $$Z$$ -function at the Gram points to the Hecke $$L$$ -functions, which in turn implies the weak Gram law for them. Instead of proceeding analogously to Titchmarsh with an approximate functional equation we employ a different method using contour integration.

Tài liệu tham khảo

Apostol, T.M., Sklar, A.: The approximate functional equation of Hecke’s Dirichlet series. Trans. Am. Math. Soc. 86(2), 446–462 (1957) Cao, X., Tanigawa, Y., Zhai, W.: Average of Hardy’s function at Gram points. Acta Arithmet. 199, 237–251 (2021) Deligne, P.: La conjecture de Weil I. Publ. I.H.E.S. 43, 273–307 (1974) Gram, J.P.: Sue les zéde la fonction \(\zeta \)(s) de Riemann. Acta Math. 27, 289–304 (1903) Guthmann, A.: Ramanujans Tau-Funktion. In: Universität Kaiserslautern (Preprint) (1988) Hardy, G.H.: Sur les zéros de la fonction \(\zeta (s)\) de Riemann. Compt. Rend. Acad. Sci. (Paris) 158, 1012–1014 (1914) Hardy, G.H., Littlewood, J.E.: The approximate functional equation for \(\zeta (s)\) and \(\zeta ^{2}(s)\). Proc. Lond. Math. Soc. 29, 81–97 (1929) Hutchinson, J.I.: On the roots of the Riemann Zeta-function. Trans. Am. Math. Soc. 27(1), 49–60 (1925) Ivić, A.: The Riemann Zeta-function. Theory and Applications, Dover Publications Inc, Mineola, NY(2003) Ivić, A.: On the integal of Hardy’s function. Arch. Math. 83, 41–47 (2004) Ivić, A.: The Theory of Hardy’s Z-Function. Cambridge University Press, Cambridge (2012) Iwaniec, H.: Topics in Classical Automorphic Forms. American Mathematical Society, Providence, RI (1997) Jutila, M.: On the approximate functional equation for \(\zeta ^{2}(s)\) and other Dirichlet series. Quart. J. Math. 37(2), 193–209 (1986) Jutila, M.: Atkinson’s formula for Hardy’s function. J. Number Theory 129, 2853–2878 (2009) Karatsuba, A.A., Voronin, S.M.: The Riemann Zeta-Function. Walter de Gruyter, New York (1992) Korolev, M.A.: On the integral of Hardy’s function Z(t). Izv. Math. 72(3), 429–478 (2008) Lang, S.: Complex Analysis, 4th edn. Springer, New York (1999) Lekkerkerker, C.G.: On the zeros of a class of Dirichlet series. Proefschrift, van Gorcum, NV (1955) Titchmarsh, E.C.: On van der Corput’s method and the zeta-function of Riemann. Q. J. Math. 5(1), 98–105 (1934) Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Oxford University Press, Oxford (1986) Trudgian, T.: On the success and failure of Gram’s law and the Rosser rule. Acta Arith. 148, 225–256 (2011)