The wall-less bacterium Spiroplasma poulsonii builds a polymeric cytoskeleton composed of interacting MreB isoforms

iScience - Tập 24 - Trang 103458 - 2021
Florent Masson1, Xavier Pierrat1,2, Bruno Lemaitre1, Alexandre Persat1,2
1Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
2Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Tài liệu tham khảo

Bendezú, 2009, RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli, EMBO J., 28, 193, 10.1038/emboj.2008.264 Berg, 2002, How Spiroplasma might swim, J. Bacteriol., 184, 2063 LP, 10.1128/JB.184.8.2063-2064.2002 Billings, 2014, De novo morphogenesis in L-forms via geometric control of cell growth, Mol. Microbiol., 93, 883, 10.1111/mmi.12703 Bork, 1992, An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins, Proc. Natl. Acad. Sci. U S A, 89, 7290, 10.1073/pnas.89.16.7290 Bové, 1993, Molecular features of mollicutes, Clin. Infect.Dis., 17, S10, 10.1093/clinids/17.Supplement_1.S10 Cabeen, 2005, Bacterial cell shape, Nat. Rev. Microbiol., 3, 601, 10.1038/nrmicro1205 Chiu, 2008, Dynamic localization of MreB in Vibrio parahaemolyticus and in the ectopic host bacterium Escherichia coli, Appl.Environ.Microbiol., 74, 6739, 10.1128/AEM.01021-08 Cox, 2014, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol. Cell Proteom., 13, 2513, 10.1074/mcp.M113.031591 Cox, 2008, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol., 26, 1367, 10.1038/nbt.1511 Domínguez-Escobar, 2011, Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria, Science, 333, 225, 10.1126/science.1203466 Dorin-Semblat, 2015, Malaria parasite-infected erythrocytes secrete PfCK1, the plasmodium homologue of the pleiotropic protein kinase casein kinase 1, PLoS One, 10, e0139591, 10.1371/journal.pone.0139591 Duret, 2005, Specific gene targeting in Spiroplasma citri: improved vectors and production of unmarked mutations using site-specific recombination, Microbiology, 151, 2793, 10.1099/mic.0.28123-0 Duret, 1999, Gene disruption through homologous recombination in Spiroplasma citri: an scm1-disrupted motility mutant is pathogenic, J. Bacteriol., 181, 7449, 10.1128/JB.181.24.7449-7456.1999 Errington, 2015, Bacterial morphogenesis and the enigmatic MreB helix, Nat. Rev. Microbiol., 13, 241, 10.1038/nrmicro3398 Garner, 2011, Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis, Science, 333, 222, 10.1126/science.1203285 Gasparich, 2002, Spiroplasmas: evolution, adaptation and diversity, Front. Biosci., 7, 619 Gerth, 2021, Rapid molecular evolution of Spiroplasma symbionts of Drosophila, Microb.Genom., 7, 000503 Harne, 2020, MreB5 is a determinant of rod-to-helical transition in the cell-wall-less bacterium Spiroplasma, Curr.Biol., 30, 4753, 10.1016/j.cub.2020.08.093 Hartmann, 2020, BacStalk: a comprehensive and interactive image analysis software tool for bacterial cell biology, Mol. Microbiol., 114, 140, 10.1111/mmi.14501 Harumoto, 2018, Male-killing toxin in a bacterial symbiont of Drosophila, Nature, 557, 252, 10.1038/s41586-018-0086-2 Herren, 2013, Vertical transmission of a Drosophila endosymbiont via cooption of the yolk transport and internalization machinery, mBio, 4, 10.1128/mBio.00532-12 Jones, 2001, Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis, Cell, 104, 913, 10.1016/S0092-8674(01)00287-2 Karimova, 1998, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proc. Natl. Acad. Sci. U S A, 95, 5752 LP, 10.1073/pnas.95.10.5752 Ku, 2014, Molecular evolution of the actin-like MreB protein gene family in wall-less bacteria, Biochem.Biophys. Res. Commun., 446, 927, 10.1016/j.bbrc.2014.03.039 Kürner, 2005, Cryo–electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum, Science, 436, 10.1126/science.1104031 Kysela, 2016, Diversity takes shape: understanding the mechanistic and adaptive basis of bacterial morphology, PLoS Biol., 14, e1002565, 10.1371/journal.pbio.1002565 Lim, 2011, Fundamental relationship between operon organization and gene expression, Proc. Natl. Acad. Sci. U S A, 108, 10626, 10.1073/pnas.1105692108 Marais, 1996, Characterization of the recA gene regions of Spiroplasma citri and Spiroplasma melliferum, J.Bacteriol., 178, 7003, 10.1128/jb.178.23.7003-7009.1996 Masson, 2018, In vitro culture of the insect endosymbiont Spiroplasma poulsonii highlights bacterial genes involved in host-symbiont interaction, mBio, 9, 10.1128/mBio.00024-18 Masson, 2020, Growing ungrowable bacteria: overview and perspectives on insect symbiont culturability, Microbiol.Mol. Biol. Rev., 84, 10.1128/MMBR.00089-20 Masson, 2020, Transformation of the Drosophila sex-manipulative endosymbiont Spiroplasma poulsonii and persisting hurdles for functional genetics studies, Appl. Environ.Microbiol., 10.1128/AEM.00835-20 Mateos, 2006, Heritable endosymbionts of Drosophila, Genetics, 174, 363, 10.1534/genetics.106.058818 Morgenstein, 2015, RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis, Proc. Natl. Acad. Sci. U S A, 112, 12510, 10.1073/pnas.1509610112 Ouzounov, 2016, MreB orientation correlates with cell diameter in Escherichia coli, Biophys. J., 111, 1035, 10.1016/j.bpj.2016.07.017 Paredes, 2015, Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont, mBio, 6, 10.1128/mBio.02437-14 Ramond, 2016, Cell division by longitudinal scission in the insect endosymbiont Spiroplasma poulsonii, mBio, 7, 10.1128/mBio.00881-16 Rappsilber, 2007, Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips, Nat. Protoc., 2, 1896, 10.1038/nprot.2007.261 Reimold, 2013, Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology, Mol. Biol.Cell, 24, 2340, 10.1091/mbc.e12-10-0728 Salje, 2011, Direct membrane binding by bacterial actin MreB, Mol.Cell, 43, 478, 10.1016/j.molcel.2011.07.008 Sasajima, 2021, Elucidation of fibril structure responsible for swimming in Spiroplasma using electron microscopy, bioRxiv Shaevitz, 2005, Spiroplasma swim by a processive change in body helicity, Cell, 122, 941, 10.1016/j.cell.2005.07.004 Shi, 2018, How to build a bacterial cell: MreB as the foreman of E. coli construction, Cell, 172, 1294, 10.1016/j.cell.2018.02.050 Shi, 2017, Deep phenotypic mapping of bacterial cytoskeletal mutants reveals physiological robustness to cell size, Curr.Biol., 27, 3419, 10.1016/j.cub.2017.09.065 Shih, 2003, Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles, Proc. Natl. Acad. Sci. U S A, 100, 7865, 10.1073/pnas.1232225100 Srinivasan, 2007, filament formation of the Escherichia coli actin-related protein, MreB, in fission yeast, Curr. Biol., 17, 266, 10.1016/j.cub.2006.11.069 Svitkina, 2018, The actin cytoskeleton and actin-based motility, Cold Spring Harbor Perspect.Biol., 10, a018267, 10.1101/cshperspect.a018267 Swulius, 2011, Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria, Biochem.Biophys.Res.Commun., 407, 650, 10.1016/j.bbrc.2011.03.062 Swulius, 2012, The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-terminal yellow fluorescent protein tag, J. Bacteriol., 194, 6382, 10.1128/JB.00505-12 Takahashi, 2020, Phylogenetic origin and sequence features of MreB from the wall-less swimming bacteria Spiroplasma, Biochem.Biophys. Res. Commun., 10.1016/j.bbrc.2020.09.060 Townsend, 1980, Morphology and ultrastructure of helical and nonhelical strains of Spiroplasma citri, J.Bacteriol., 142, 973, 10.1128/jb.142.3.973-981.1980 Townsend, 1989, Immunogoldlocalization of p55-fibril protein and p25-spiralin in Spiroplasma cells, J. Gen. Microbiol., 131, 983 Trachtenberg, 1998, Mollicutes —wall-less bacteria with internal cytoskeletons, J. Struct. Biol., 256, 244, 10.1006/jsbi.1998.4063 Trachtenberg, 2008, Structure of the cytoskeleton of Spiroplasma melliferum BC3 and its interactions with the cell membrane, J. Mol. Biol., 378, 776, 10.1016/j.jmb.2008.02.020 Trachtenberg, 2001, A bacterial linear motor: cellular and molecular organization of the contractile cytoskeleton of the helical bacterium Spiroplasma melliferum BC3, Mol. Microbiol., 41, 827, 10.1046/j.1365-2958.2001.02527.x Tyanova, 2016, The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat. Methods, 13, 731, 10.1038/nmeth.3901 Ursell, 2014, Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization, Proc. Natl. Acad. Sci. U S A, 111, E1025, 10.1073/pnas.1317174111 van den Ent, 2001, Prokaryotic origin of the actin cytoskeleton, Nature, 413, 39, 10.1038/35092500 van den Ent, 2014, Bacterial actin MreB forms antiparallel double filaments, eLife, 3, e02634, 10.7554/eLife.02634 van den Ent, 2010, Bacterial actin MreB assembles in complex with cell shape protein RodZ, EMBO J., 29, 1081, 10.1038/emboj.2010.9 van Teeffelen, 2011, The bacterial actin MreB rotates, and rotation depends on cell-wall assembly, Proc. Natl. Acad. Sci. U S A, 108, 15822, 10.1073/pnas.1108999108 Vats, 2007, Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle, Proc. Natl. Acad. Sci. USA, 104, 17795, 10.1073/pnas.0708739104 Wagstaff, 2018, Prokaryotic cytoskeletons: protein filaments organizing small cells, Nat. Rev. Microbiol., 16, 187, 10.1038/nrmicro.2017.153 Wang, 2010, Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria, Proc. Natl. Acad. Sci. U S A, 107, 9182LP, 10.1073/pnas.0911517107 Williamson, 1974, Unusual fibrils from the spirochete-like sex ratio organism, J.Bacteriol., 117, 904, 10.1128/jb.117.2.904-906.1974 Wu, 1998, Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis, Mol.Microbiol., 27, 777, 10.1046/j.1365-2958.1998.00724.x Young, 2006, The selective value of bacterial shape, Microbiol.Mol. Biol. Rev., 70, 660 LP, 10.1128/MMBR.00001-06