The virtual element method for the time fractional convection diffusion reaction equation with non-smooth data
Tài liệu tham khảo
Podlubny, 1999
Kilbas, 2006
Liu, 2015
Baleanu, 2016, Fractional Calculus: Models and Numerical Methods, vol. 5
Liu, 2007, Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation, Appl. Math. Comput., 191, 12, 10.1007/s40314-022-02142-4
Cui, 2015, Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients, J. Comput. Phys., 280, 143, 10.1016/j.jcp.2014.09.012
Jiang, 2011, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235, 3285, 10.1016/j.cam.2011.01.011
Liu, 2017, Finite element algorithm based on high-order time approximation for time fractional convection-diffusion equation, J. Appl. Anal. Comput., 8, 229
Li, 2019, Nonconforming virtual element method for the time fractional reaction–subdiffusion equation with non-smooth data, J. Sci. Comput., 81, 1823, 10.1007/s10915-019-01064-4
Zhao, 2016, Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations, Appl. Math. Lett., 59, 38, 10.1016/j.aml.2016.03.005
Badr, 2018, Stability of a finite volume element method for the time-fractional advection-diffusion equation, Numer. Methods Partial Differ. Equ., 34, 1459, 10.1002/num.22243
Izadkhah, 2015, Gegenbauer spectral method for time-fractional convection–diffusion equations with variable coefficients, Math. Methods Appl. Sci., 38, 3183, 10.1002/mma.3289
Yu, 2017, A space-time spectral method for one-dimensional time fractional convection diffusion equations, Math. Methods Appl. Sci., 40, 2634, 10.1002/mma.4188
Bouharguane, 2020, The local discontinuous Galerkin method for convection-diffusion-fractional anti-diffusion equations, Appl. Numer. Math., 148, 61, 10.1016/j.apnum.2019.09.001
Ahmadinia, 2018, Analysis of local discontinuous Galerkin method for time–space fractional convection–diffusion equations, BIT Numer. Math., 58, 533, 10.1007/s10543-018-0697-x
Wei, 2013, Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations, Int. J. Numer. Methods Heat Fluid Flow, 23, 634, 10.1108/09615531311323782
Tian, 2006, The flow analysis of fluids in fractal reservoir with the fractional derivative, J. Hydrodyn., 18, 287, 10.1016/S1001-6058(06)60005-X
da Veiga, 2014, The Mimetic Finite Difference Method for Elliptic Problems, vol. 11
Cockburn, 2011, The hybridizable discontinuous Galerkin methods, 2749
Pietro, 2015, Hybrid high-order methods for variable-diffusion problems on general meshes, C. R. Math., 353, 31, 10.1016/j.crma.2014.10.013
Wang, 2014, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83, 2101, 10.1090/S0025-5718-2014-02852-4
Astaneh, 2017, High-order polygonal discontinuous Petrov–Galerkin (PolyDPG) methods using ultraweak formulations, Comput. Methods Appl. Mech. Eng., 332, 686, 10.1016/j.cma.2017.12.011
Fan, 2017, A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain, Fract. Calc. Appl. Anal., 20, 352, 10.1515/fca-2017-0019
Yang, 2020, An unstructured mesh finite difference/finite element method for the three-dimensional time-space fractional Bloch-Torrey equations on irregular domains, J. Comput. Phys., 408, 10.1016/j.jcp.2020.109284
Shi, 2019, An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain, Appl. Math. Model., 73, 615, 10.1016/j.apm.2019.04.023
Feng, 2020, An unstructured mesh control volume method for two-dimensional space fractional diffusion equations with variable coefficients on convex domains, J. Comput. Appl. Math., 364, 10.1016/j.cam.2019.06.035
da Veiga, 2014, The hitchhiker's guide to the virtual element method, Math. Models Methods Appl. Sci., 24, 1541, 10.1142/S021820251440003X
Ahmad, 2013, Equivalent projectors for virtual element methods, Comput. Math. Appl., 66, 376, 10.1016/j.camwa.2013.05.015
Beir, 2013, Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 199, 10.1142/S0218202512500492
da Veiga, 2016, Virtual element implementation for general elliptic equations, Build. Bridges: Connect. Challenges Modern Approach. Numer. Partial Differ. Equ., 114, 39
Chen, 2018, Some error analysis on virtual element methods, Calcolo, 55, 1, 10.1007/s10092-018-0249-4
Chen, 2017, An interface-fitted mesh generator and virtual element methods for elliptic interface problems, J. Comput. Phys., 334, 327, 10.1016/j.jcp.2017.01.004
Vacca, 2015, Virtual element methods for parabolic problems on polygonal meshes: VEM for parabolic problems, Numer. Methods Partial Differ. Equ., 31, 2110, 10.1002/num.21982
Zhang, 2018, Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation, Appl. Math. Comput., 328, 1, 10.1016/j.cam.2017.12.045
Benedetto, 2016, Order preserving supg stabilization for the virtual element formulation of advection-diffusion problems, Comput. Methods Appl. Mech. Eng., 311, 18, 10.1016/j.cma.2016.07.043
Brezzi, 2014, Basic principles of mixed virtual element methods, Math. Model. Numer. Anal., 48, 1227, 10.1051/m2an/2013138
Lovadina, 2018, Mixed virtual element methods for elasticity problems, 25
da Veiga, 2016, Mixed virtual element methods for general second order elliptic problems on polygonal meshes, Math. Model. Numer. Anal., 50, 727, 10.1051/m2an/2015067
Zhang, 2019, Mixed virtual element methods for elastodynamics with weak symmetry, J. Comput. Appl. Math., 353, 49, 10.1016/j.cam.2018.12.020
de Dios, 2016, The nonconforming virtual element method, Math. Model. Numer. Anal., 50, 879, 10.1051/m2an/2015090
Cangiani, 2016, Conforming and nonconforming virtual element methods for elliptic problems, IMA J. Numer. Anal., 37, 1317
Cangiani, 2016, The nonconforming virtual element method for the stokes equations, SIAM J. Numer. Anal., 54, 3411, 10.1137/15M1049531
Zhao, 2019, The nonconforming virtual element method for parabolic problems, Appl. Numer. Math., 143, 97, 10.1016/j.apnum.2019.04.002
Veiga, 2016, H(div) and h(curl)-conforming virtual element methods, Numer. Math., 133, 303
Brezzi, 2014, Virtual element and discontinuous Galerkin methods, 209
Chen, 2021, Blow-up of error estimates in time-fractional initial-boundary value problems, IMA J. Numer. Anal., 41, 974, 10.1093/imanum/draa015
Liao, 2012, A compact high-order finite difference method for unsteady convection-diffusion equation, Int. J. Comput. Methods Eng. Sci. Mech., 13, 135, 10.1080/15502287.2012.660227
Zhai, 2014, An unconditionally stable compact ADI method for three-dimensional time-fractional convection–diffusion equation, J. Comput. Phys., 269, 138, 10.1016/j.jcp.2014.03.020
Stynes, 2017, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 1057, 10.1137/16M1082329
Sakamoto, 2011, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 426, 10.1016/j.jmaa.2011.04.058
Kopteva, 2019, Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions, Math. Comput., 88, 2135, 10.1090/mcom/3410
Alikhanov, 2010, A priori estimates for solutions of boundary value problems for fractional-order equations, Differ. Equ., 46, 660, 10.1134/S0012266110050058
Chen, 2019, Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem, J. Sci. Comput., 79, 624, 10.1007/s10915-018-0863-y