The vertical and triangular morphology in the as-deposited Ti-6Al-4V

Materials Characterization - Tập 131 - Trang 91-97 - 2017
H.Z. Zhong1, Zhaoyang Liu1, J.F. Gu1
1Institute of Materials Modification and Modeling, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China

Tài liệu tham khảo

Baufeld, 2010, Texture and crystal orientation in Ti-6Al-4V builds fabricated by shaped metal deposition, Metal. Mater. Trans. A, 41, 1917, 10.1007/s11661-010-0255-x Simonelli, 2014, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V, Mater. Sci. Eng. A, 616, 1, 10.1016/j.msea.2014.07.086 Kalinyuk, 2003, Microstructure, texture, and mechanical properties of electron-beam melted Ti-6Al-4V, Mater. Sci. Eng. A, 346, 178, 10.1016/S0921-5093(02)00518-X Kelly, 2004, Microstructure evolution in laser-deposited multilayer Ti-6Al-4V builds: part I. Microstructural characterization, Metal. Mater. Trans. A, 35, 1861, 10.1007/s11661-004-0094-8 Wu, 2004, Microstructures of lase-deposited Ti-6Al-4V, Mater. Des., 25, 137, 10.1016/j.matdes.2003.09.009 Xu, 2015, Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition, Acta Mater., 85, 74, 10.1016/j.actamat.2014.11.028 Lu, 2016, Massive transformation in Ti-6Al-4V additively manufactured by selective electron beam melting, Acta Mater., 104, 303, 10.1016/j.actamat.2015.11.011 Okamoto, 1978, Couplings of thin-plate martensites in an Fe-Ni-C alloy, Trans. JIM, 19, 674, 10.2320/matertrans1960.19.674 Srivastava, 1993, Self accommodation morphology of martensite variations in Zr-25.%Nb alloys, Acta Mater., 41, 3445, 10.1016/0956-7151(93)90224-G Baufeld, 2010, Texture and crystal orientation in Ti-6Al-4V builds fabricated by shaped metal deposition, Metal. Mater. Trans. A, 41, 1917, 10.1007/s11661-010-0255-x Simonelli, 2014, On the texture formation of selective laser melted Ti-6Al-4V, Metal. Mater. Trans. A, 45, 2863, 10.1007/s11661-014-2218-0 Kobryn, 2001, The Laser Additive Manufacture of Ti-6Al-4V, JOM 53, 40, 10.1007/s11837-001-0068-x Yang, 2016, Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting, Mater. Des., 108, 308, 10.1016/j.matdes.2016.06.117 Wang, 2003, Acta Mater., 51, 2485, 10.1016/S1359-6454(03)00035-1 Balachandran, 2016, On variant distribution and coarsening behavior of the α phase in a metastable β titanium alloy, Acta Mater., 106, 347, 10.1016/j.actamat.2016.01.023 Chai, 2009, Self-accommodation in Ti-Nb shaped memory alloys, Acta Mater., 57, 4054, 10.1016/j.actamat.2009.04.051 Meng, 2006, Effect of internal stress on autocatalytic nucleation of martensitic transformation, Metal. Mater. Trans. A, 37, 1405, 10.1007/s11661-006-0085-z Srivastava, 1993, Self accommodation morphology of martensite variants in Zr-2.5% Nb alloy, Acta Mater., 41, 3445, 10.1016/0956-7151(93)90224-G Nishida, 2012, Self-accommodation of B19′ martensite in Ti-Ni shape memory alloys—part I. Morphological and crystallographic studies of the variant selection rule, Philos. Mag., 92, 2215, 10.1080/14786435.2012.669858 Nishida, 2012, Self-accommodation of B19′ martensite in Ti-Ni shape memory alloys—part II. Characteristic interface structures between habit plane variants, Philos. Mag., 92, 2234, 10.1080/14786435.2012.669860 Inamura, 2012, Self-accommodation of B19′ martensite in Ti-Ni shape memory alloys—part III. Analysis of habit plane variant clusters by the geometrically nonlinear theory, Philos. Mag., 92, 2247, 10.1080/14786435.2012.669859