The variational iteration method for studying the Klein–Gordon equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ablowitz, 1990
He, 1997, A new approach to nonlinear partial differential equations, Comm. Nonlinear Sci. Numer. Simul., 2, 230, 10.1016/S1007-5704(97)90007-1
He, 1998, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Engrg., 167, 57, 10.1016/S0045-7825(98)00108-X
He, 1998, Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. Methods Appl. Mech. Engrg., 167, 69, 10.1016/S0045-7825(98)00109-1
He, 1999, Variational iteration method—A kind of non-linear analytical technique: Some examples, Internat. J. Non-Linear Mech., 34, 699, 10.1016/S0020-7462(98)00048-1
He, 2000, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114, 115, 10.1016/S0096-3003(99)00104-6
He, 2004, Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fractals, 19, 847, 10.1016/S0960-0779(03)00265-0
Abdou, 2005, New applications of variational iteration method, Physica D, 211, 1, 10.1016/j.physd.2005.08.002
Abdou, 2005, Variational iteration method for solving Burgers’ and coupled Burgers’ equations, J. Comput. Appl. Math., 181, 245, 10.1016/j.cam.2004.11.032
Momani, 2006, Application of He’s variational iteration method to Helmholtz equation, Chaos Solitons Fractals, 27, 1119, 10.1016/j.chaos.2005.04.113
Odibat, 2006, Application of variational iteration method to nonlinear differential equations of fractional order, Internat. J. Nonlinear Sci. Numer. Simul, 7, 27, 10.1515/IJNSNS.2006.7.1.27
He, 2006, Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern Phys. B, 20, 1141, 10.1142/S0217979206033796
Abulwafa, 2006, The solution of nonlinear coagulation problem with mass loss, Chaos Solitons Fractals, 26, 313, 10.1016/j.chaos.2005.08.044
Bildik, 2006, The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, Internat. J. Nonlinear Sci. Numer. Simul., 7, 65, 10.1515/IJNSNS.2006.7.1.65
Dodd, 1982
Khaliq, 2000, A predictor–corrector scheme for sine–Gordon equation, Numer. Methods Partial Differential Equations, 16, 133, 10.1002/(SICI)1098-2426(200003)16:2<133::AID-NUM1>3.0.CO;2-P
Lynch, 1999, Large amplitude instability in finite difference approximations to the Klein–Gordon equation, Appl. Numer. Math., 31, 173, 10.1016/S0168-9274(98)00128-7
Lu, 1999, Symplectic integration of sine–Gordon type systems, Math. Comput. Simulation, 50, 255, 10.1016/S0378-4754(99)00083-X
Kaya, 2005, An implementation of the ADM for generalized one-dimensional Klein–Gordon equation, Appl. Math. Comput., 166, 426, 10.1016/j.amc.2004.06.103
Kaya, 2004, A numerical solution of the Klein—Gordon equation and convergence of the decomposition method, Appl. Math. Comput., 156, 341, 10.1016/j.amc.2003.07.014
El-Sayed, 2003, The decomposition method for studying the Klein–Gordon equation, Chaos Solitons Fractals, 18, 1025, 10.1016/S0960-0779(02)00647-1
Wazwaz, 2006, The modified decomposition method for analytic treatment of differential equations, Appl. Math. Comput., 173, 165, 10.1016/j.amc.2005.02.048
Adomian, 1994
Wazwaz, 1997, A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102, 77, 10.1016/S0096-3003(98)10024-3
Wazwaz, 2000, A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111, 53, 10.1016/S0096-3003(99)00063-6