The variational iteration method for studying the Klein–Gordon equation

Applied Mathematics Letters - Tập 21 Số 7 - Trang 669-674 - 2008
Elçin Yusufoğlu1
1Dumlupinar University, Art-Science Faculty, Department of Mathematics, Kütahya, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ablowitz, 1990

He, 1997, A new approach to nonlinear partial differential equations, Comm. Nonlinear Sci. Numer. Simul., 2, 230, 10.1016/S1007-5704(97)90007-1

He, 1998, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Engrg., 167, 57, 10.1016/S0045-7825(98)00108-X

He, 1998, Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. Methods Appl. Mech. Engrg., 167, 69, 10.1016/S0045-7825(98)00109-1

He, 1999, Variational iteration method—A kind of non-linear analytical technique: Some examples, Internat. J. Non-Linear Mech., 34, 699, 10.1016/S0020-7462(98)00048-1

He, 2000, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114, 115, 10.1016/S0096-3003(99)00104-6

He, 2004, Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fractals, 19, 847, 10.1016/S0960-0779(03)00265-0

Abdou, 2005, New applications of variational iteration method, Physica D, 211, 1, 10.1016/j.physd.2005.08.002

Abdou, 2005, Variational iteration method for solving Burgers’ and coupled Burgers’ equations, J. Comput. Appl. Math., 181, 245, 10.1016/j.cam.2004.11.032

Momani, 2006, Application of He’s variational iteration method to Helmholtz equation, Chaos Solitons Fractals, 27, 1119, 10.1016/j.chaos.2005.04.113

Odibat, 2006, Application of variational iteration method to nonlinear differential equations of fractional order, Internat. J. Nonlinear Sci. Numer. Simul, 7, 27, 10.1515/IJNSNS.2006.7.1.27

He, 2006, Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern Phys. B, 20, 1141, 10.1142/S0217979206033796

Abulwafa, 2006, The solution of nonlinear coagulation problem with mass loss, Chaos Solitons Fractals, 26, 313, 10.1016/j.chaos.2005.08.044

Bildik, 2006, The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, Internat. J. Nonlinear Sci. Numer. Simul., 7, 65, 10.1515/IJNSNS.2006.7.1.65

Dodd, 1982

Khaliq, 2000, A predictor–corrector scheme for sine–Gordon equation, Numer. Methods Partial Differential Equations, 16, 133, 10.1002/(SICI)1098-2426(200003)16:2<133::AID-NUM1>3.0.CO;2-P

Lynch, 1999, Large amplitude instability in finite difference approximations to the Klein–Gordon equation, Appl. Numer. Math., 31, 173, 10.1016/S0168-9274(98)00128-7

Lu, 1999, Symplectic integration of sine–Gordon type systems, Math. Comput. Simulation, 50, 255, 10.1016/S0378-4754(99)00083-X

Kaya, 2005, An implementation of the ADM for generalized one-dimensional Klein–Gordon equation, Appl. Math. Comput., 166, 426, 10.1016/j.amc.2004.06.103

Kaya, 2004, A numerical solution of the Klein—Gordon equation and convergence of the decomposition method, Appl. Math. Comput., 156, 341, 10.1016/j.amc.2003.07.014

El-Sayed, 2003, The decomposition method for studying the Klein–Gordon equation, Chaos Solitons Fractals, 18, 1025, 10.1016/S0960-0779(02)00647-1

Wazwaz, 2006, The modified decomposition method for analytic treatment of differential equations, Appl. Math. Comput., 173, 165, 10.1016/j.amc.2005.02.048

Adomian, 1994

Wazwaz, 1997, A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102, 77, 10.1016/S0096-3003(98)10024-3

Wazwaz, 2000, A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput., 111, 53, 10.1016/S0096-3003(99)00063-6

Zhao, 2006, A new Riccati equation expansion method with symbolic computation to construct new travelling wave solution of nonlinear differential equations, Appl. Math. Comput., 172, 24, 10.1016/j.amc.2005.01.145