The variational collocation method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Canuto, 2006
Quarteroni, 2008
Schillinger, 2015, A collocated c0 finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics, Internat. J. Numer. Methods Engrg., 102, 576, 10.1002/nme.4783
Hughes, 2005, Isogeometric analysis CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
Cottrell, 2009
Bazilevs, 2010, Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229, 10.1016/j.cma.2009.02.036
Gomez, 2008, Isogeometric analysis of the Cahn–Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333, 10.1016/j.cma.2008.05.003
Gomez, 2010, Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations, Comput. Methods Appl. Mech. Engrg., 199, 1828, 10.1016/j.cma.2010.02.010
Lipton, 2010, Robustness of isogeometric structural discretizations under severe mesh distortion, Comput. Methods Appl. Mech. Engrg., 199, 357, 10.1016/j.cma.2009.01.022
Evans, 2013, Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations, J. Comput. Phys., 241, 141, 10.1016/j.jcp.2013.01.006
Auricchio, 2010, Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 2075, 10.1142/S0218202510004878
Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249, 2, 10.1016/j.cma.2012.03.026
Casquero, 2016, Isogeometric collocation using analysis-suitable t-splines of arbitrary degree, Comput. Methods Appl. Mech. Engrg., 301, 164, 10.1016/j.cma.2015.12.014
Gomez, 2014, Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models, J. Comput. Phys., 262, 153, 10.1016/j.jcp.2013.12.044
Reali, 2015, An isogeometric collocation approach for Bernoulli–Euler beams and kirchhoff plates, Comput. Methods Appl. Mech. Engrg., 284, 623, 10.1016/j.cma.2014.10.027
Casquero, 2016, A hybrid variational-collocation immersed method for fluid–structure interaction using unstructured T-splines, Internat. J. Numer. Methods Engrg., 105, 855, 10.1002/nme.5004
De~Lorenzis, 2015, Isogeometric collocation: Neumann boundary conditions and contact, Comput. Methods Appl. Mech. Engrg., 284, 21, 10.1016/j.cma.2014.06.037
Kruse, 2015, Isogeometric collocation for large deformation elasticity and frictional contact problems, Comput. Methods Appl. Mech. Engrg., 296, 73, 10.1016/j.cma.2015.07.022
Schillinger, 2013, Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170, 10.1016/j.cma.2013.07.017
Arroyo, 2006, Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, Internat. J. Numer. Methods Engrg., 65, 2167, 10.1002/nme.1534
Hobson, 1907
T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis Cited By (since 1996), 1023.
Li, 2007
Kiendl, 2009, Isogeometric shell analysis with Kirchhoff–Love elements, Comput. Methods Appl. Mech. Engrg., 198, 3902, 10.1016/j.cma.2009.08.013
Elguedj, 2008, B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Engrg., 197, 2732, 10.1016/j.cma.2008.01.012
Auricchio, 2007, A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation, Comput. Methods Appl. Mech. Engrg., 197, 160, 10.1016/j.cma.2007.07.005
Dimitri, 2014, NURBS and T-spline-based isogeometric cohesive zone modeling of interface debonding, Comput. Mech., 54, 369, 10.1007/s00466-014-0991-7
Dhote, 2015, Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects, Comput. Phys. Comm.
Dhote, 2013, Isogeometric analysis of a dynamic thermo-mechanical phase-field model applied to shape memory alloys, Comput. Mech., 53, 1235, 10.1007/s00466-013-0966-0
Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173, 10.1016/j.cma.2007.07.016
Gomez, 2013, Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium, J. Comput. Phys., 238, 217, 10.1016/j.jcp.2012.12.018
Liu, 2015, Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations, Comput. Methods Appl. Mech. Engrg., 297, 476, 10.1016/j.cma.2015.09.007
Ambati, 2015, A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 383, 10.1007/s00466-014-1109-y
Gomez, 2012, An unconditionally energy-stable method for the phase field crystal equation, Comput. Methods Appl. Mech. Engrg., 249, 52, 10.1016/j.cma.2012.03.002
Liu, 2013, Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations, J. Comput. Phys., 248, 47, 10.1016/j.jcp.2013.04.005
Dimitri, 2014, Isogeometric large deformation frictionless contact using t-splines, Comput. Methods Appl. Mech. Engrg., 269, 394, 10.1016/j.cma.2013.11.002
De~Lorenzis, 2012, A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method, Comput. Mech., 49, 1, 10.1007/s00466-011-0623-4
Vilanova, 2013, Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis, Int. J. Numer. Methods Biomed. Eng., 29, 1015, 10.1002/cnm.2552
Vilanova, 2013, Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis, Comput. Mech., 53, 449, 10.1007/s00466-013-0958-0
Bazilevs, 2008, Isogeometric fluid–structure interaction: Theory, algorithms, and computations, Comput. Mech., 43, 3, 10.1007/s00466-008-0315-x
Kamensky, 2015, An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg., 284, 1005, 10.1016/j.cma.2014.10.040
Bueno, 2014, Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion, Comput. Mech., 1
Casquero, 2015, A NURBS-based immersed methodology for fluid–structure interaction, Comput. Methods Appl. Mech. Engrg., 284, 943, 10.1016/j.cma.2014.10.055
Babuška, 1996, Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations, Numer. Methods Partial Differential Equations, 12, 347, 10.1002/num.1690120303
Barlow, 1976, Optimal stress locations in finite element models, Internat. J. Numer. Methods Engrg., 10, 243, 10.1002/nme.1620100202
Babuška, 2007, Superconvergence in the generalized finite element method, Numer. Math., 107, 353, 10.1007/s00211-007-0096-8
Wahlbin, 1995
Anitescu, 2015, An isogeometric collocation method using superconvergent points, Comput. Methods Appl. Mech. Engrg., 284, 1073, 10.1016/j.cma.2014.11.038
Bazilevs, 2010, Isogeometric analysis using t-splines, Comput. Methods Appl. Mech. Engrg., 199, 229, 10.1016/j.cma.2009.02.036
Beirao~da Veiga, 2013, Analysis suitable T-splines of arbitrary degree: Definition, linear independence, and approximation properties, Math. Models Methods Appl. Sci., 23, 1979, 10.1142/S0218202513500231
J. Simo, K. Pister, Remarks on rate constitutive equations for finite deformation 46 (1984) 201–215.
Reali, 2015, An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates, Comput. Methods Appl. Mech. Engrg., 284, 623, 10.1016/j.cma.2014.10.027
Schillinger, 2014, Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 277, 1, 10.1016/j.cma.2014.04.008
Hughes, 2010, Efficient quadrature for nurbs-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004
C. De Boor, A practical guide to splines, Math. Comput.
de~Boor, 2005, Divided differences, Surv. Approx. Theory, 1, 46