The variational Poisson cohomology

Alberto De Sole1, Victor G. Kač2
1Dipartimento di Matematica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
2Department of Mathematics, MIT, Cambridge, MA 02139, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

E. Artin, Geometric Algebra, Interscience Publishers, Inc., New York–London, 1957.

Bakalov B., D’Andrea A., Kac V.G.: Theory of finite pseudoalgebras, Adv. Math 162, 1–140 (2001)

Bakalov B., Kac V.G., Voronov A.A.: Cohomology of conformal algebras, Comm. Math. Phys 200, 561–598 (1999)

Barakat A., De Sole A., Kac V.G.: Poisson vertex algebras in the theory of Hamiltonian equations, Jpn. J. Math 4, 141–252 (2009)

N. Bourbaki, Eléments de mathématique. Fasc. XXVI. Groupes et algèbres de Lie. Chapitre I: Algèbres de Lie. Second ed., Hermann, Paris, 1971.

Cantarini N., Kac V.G.: Classification of linearly compact simple rigid superalgebras, Int. Math. Res. Not. IMRN 2010, 3341–3393 (2010)

De Sole A., Hekmati P., Kac V.G.: Calculus structure on the Lie conformal algebra complex and the variational complex, J. Math. Phys 52, 053510 (2011)

De Sole A., Kac V.G.: Finite vs affine W-algebras, Jpn. J. Math 1, 137–261 (2006)

De Sole A., Kac V.G.: Lie conformal algebra cohomology and the variational complex, Comm. Math. Phys 292, 667–719 (2009)

De Sole A., Kac V.G., Wakimoto M.: On classification of Poisson vertex algebras, Transform. Groups 15, 883–907 (2010)

Dieudonné J.: Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 71, 27–45 (1943)

I.Ya. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Nonlinear Sci. Theory Appl., John Wiley & Sons, 1993.

Gardner C.S.: Korteweg–de Vries equation and generalizations. IV. The Korteweg–de Vries equation as a Hamiltonian system, J. Mathematical Phys 12, 1548–1551 (1971)

Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M.: Korteweg–de Vries equation and generalizations. VI. Methods for exact solution, Comm. Pure Appl. Math 27, 97–133 (1974)

Getzler E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations, Duke Math. J 111, 535–560 (2002)

Hufford G.: On the characteristic matrix of a matrix of differential operators, J. Differential Equations 1, 27–38 (1965)

S. Igonin, A. Verbovetsky and R. Vitolo, Variational multivectors and brackets in the geometry of jet spaces, In: Symmetry in Nonlinear Mathematical Physics. Part 1, 2, 3, Pr. Inst. Mat. Nats. Akad. Nauk Ukr. Mat. Zastos., 50, Natsīonal. Akad. Nauk Ukraïni, 2004, pp. 1335–1342.

V.G. Kac, Vertex Algebras for Beginners. Second ed., Univ. Lecture Ser., 10, Amer. Math. Soc., Providence, RI, 1998.

I.S. Krasil’shchik, Schouten bracket and canonical algebras, In: Global Analysis—Studies and Applications. III, Lecture Notes in Math., 1334, Springer-Verlag, 1988, pp. 79–110.

B.A. Kupershmidt, Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalisms, In: Geometric Methods in Mathematical Physics, Lecture Notes in Math., 775, Springer-Verlag, 1980, pp. 162–218.

Lax P.D.: Almost periodic solutions of the KdV equation. SIAM Rev. 18, 351–375 (1976)

J. Leray, Hyperbolic Differential Equations, The Institute for Advanced Study, Princeton, NJ, 1953.

Lichnerowicz A.: Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12, 253–300 (1977)

Magri F.: A simple model of the integrable Hamiltonian equation, J. Math. Phys 19, 1156–1162 (1978)

Miyake M.: On the determinant of matrices of ordinary differential operators and an index theorem, Funkcial. Ekvac 26, 155–171 (1983)

Nijenhuis A., Richardson R.W. Jr.: Deformations of Lie algebra structures, J. Math. Mech 17, 89–105 (1967)

P.J. Olver, Bi-Hamiltonian systems, In: Ordinary and Partial Differential Equations, Pitman Res. Notes in Math. Ser., 157, Longman Sci. Tech., Harlow, England, 1987, pp. 176–193.

P.J. Olver, Applications of Lie Groups to Differential Equations. Second ed., Grad. Texts in Math., 107, Springer-Verlag, 1993.

J. Praught and G.R. Smirnov, Andrew Lenard: a mystery unraveled, SIGMA Symmetry Integrability Geom. Methods Appl., 1 (2005), paper 005, 7 pp. (electronic).

Sato M., Kashiwara M.: The determinant of matrices of pseudo-differential operators, Proc. Japan Acad 51, 17–19 (1975)

L.R. Volevič, On general systems of differential equations, Dokl. Akad. Nauk SSSR, 132 (1960), 20–23 (Russian), translated as Soviet Math. Dokl., 1 (1960), 458–461.

Zakharov V.E., Faddeev L.D.: Korteweg–de Vries equation: A completely integrable Hamiltonian system, Funct. Anal. Appl 5, 280–287 (1971)