The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research

Journal of Synchrotron Radiation - Tập 23 Số 4 - Trang 1035-1045 - 2016
Zhongyue Zhou1,2, Xuewei Du1, Jiuzhong Yang1, Yizun Wang1,2, Chaoyang Li3, Wei Shen1, Liangliang Du1, Yuyang Li1,2, Fei Qi1,2, Qiuping Wang1
1National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People’s Republic of China
2School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
3China Academy of Engineering Physics, Mianyang, Sichuan 621900, People's Republic of China

Tóm tắt

An undulator-based vacuum ultraviolet (VUV) beamline (BL03U), intended for combustion chemistry studies, has been constructed at the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. The beamline is connected to the newly upgraded Hefei Light Source (HLS II), and could deliver photons in the 5–21 eV range, with a photon flux of 1013 photons s−1at 10 eV when the beam current is 300 mA. The monochromator of the beamline is equipped with two gratings (200 lines mm−1and 400 lines mm−1) and its resolving power is 3900 at 7.3 eV for the 200 lines mm−1grating and 4200 at 14.6 eV for the 400 lines mm−1grating. The beamline serves three endstations which are designed for respective studies of premixed flame, fuel pyrolysis in flow reactor, and oxidation in jet-stirred reactor. Each endstation contains a reactor chamber, an ionization chamber where the molecular beam intersects with the VUV light, and a home-made reflectron time-of-flight mass spectrometer. The performance of the beamline and endstations with some preliminary results is presented here. The ability to detect reactive intermediates (e.g.H, O, OH and hydroperoxides) is advantageous in combustion chemistry research.

Từ khóa


Tài liệu tham khảo

Anderson, 1965, Phys. Fluids, 8, 780, 10.1063/1.1761320

Battin-Leclerc, 2008, Prog. Energy Combust. Sci., 34, 440, 10.1016/j.pecs.2007.10.002

Battin-Leclerc, 2010, Angew. Chem. Int. Ed., 49, 3169, 10.1002/anie.200906850

Bhargava, 1998, Combust. Flame, 113, 333, 10.1016/S0010-2180(97)00208-3

Bhargava, 1998, Combust. Flame, 115, 456, 10.1016/S0010-2180(98)00018-2

Bierkandt, 2015, Proc. Combust. Inst., 35, 803, 10.1016/j.proci.2014.05.094

Buckmaster, 2005, Proc. Combust. Inst., 30, 1, 10.1016/j.proci.2004.08.280

Campargue, 1984, J. Phys. Chem., 88, 4466, 10.1021/j150664a004

Cole, 1984, Combust. Flame, 56, 51, 10.1016/0010-2180(84)90005-1

Cool, 2005, Rev. Sci. Instrum., 76, 094102, 10.1063/1.2010307

Cool, 2007, Proc. Combust. Inst., 31, 285, 10.1016/j.proci.2006.08.044

Cool, 2005, Int. J. Mass Spectrom., 247, 18, 10.1016/j.ijms.2005.08.018

Dodonov, 2000, Eur. J. Mass Spectrom., 6, 481, 10.1255/ejms.378

Egolfopoulos, 2014, Prog. Energy Combust. Sci., 43, 36, 10.1016/j.pecs.2014.04.004

Emmons, 1971, Symposium (Int.) Combust., 13, 1, 10.1016/S0082-0784(71)80006-1

Felsmann, 2015, Proc. Combust. Inst., 35, 779, 10.1016/j.proci.2014.05.151

Guan, 2014, Int. Rev. Phys. Chem., 33, 447, 10.1080/0144235X.2014.967951

Guilhaus, 2000, Mass Spectrom. Rev., 19, 65, 10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E

Hansen, 2009, Prog. Energy Combust. Sci., 35, 168, 10.1016/j.pecs.2008.10.001

Heimann, 1997, Rev. Sci. Instrum., 68, 1945, 10.1063/1.1148082

Hemberger, 2014, J. Phys. Chem. A, 118, 3593, 10.1021/jp501117n

Hwang, 2002, Rev. Sci. Instrum., 73, 1436, 10.1063/1.1445486

Johnson, 2009, Nucl. Instrum. Methods Phys. Res. A, 610, 597, 10.1016/j.nima.2009.08.069

Kantrowitz, 1951, Rev. Sci. Instrum., 22, 328, 10.1063/1.1745921

Kohse-Höinghaus, 2005, Proc. Combust. Inst., 30, 89, 10.1016/j.proci.2004.08.274

Krüger, 2014, Phys. Chem. Chem. Phys., 16, 22791, 10.1039/C4CP02857K

Law, 2005, Proc. Combust. Inst., 30, 1353, 10.1016/j.proci.2004.08.239

Lazzara, 1973, Combust. Flame, 21, 371, 10.1016/S0010-2180(73)80060-4

Lee, 2010, Opt. Express, 18, 23378, 10.1364/OE.18.023378

Linstrom, P. J. & Mallard, W. G. (2016). NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/.

Lu, 2011, Prog. Energy Combust. Sci., 37, 741, 10.1016/j.pecs.2011.03.003

Mamyrin, 1973, Sov. Phys. JETP, 37, 45

Miller, 2005, Proc. Combust. Inst., 30, 43, 10.1016/j.proci.2004.08.281

Nahon, 2004, Appl. Opt., 43, 1024, 10.1364/AO.43.001024

Nahon, 2012, J. Synchrotron Rad., 19, 508, 10.1107/S0909049512010588

Oßwald, 2014, Rev. Sci. Instrum., 85, 025101, 10.1063/1.4861175

Photoionization Cross Section Database (2011). Photoionization Cross Section Database, Version 1.0, http://flame.nsrl.ustc.edu.cn/en/database.htm.

Qi, 2013, Proc. Combust. Inst., 34, 33, 10.1016/j.proci.2012.09.002

Qi, 2005, Combust. Sci. Technol., 177, 2021, 10.1080/00102200590956704

Qi, 2006, Rev. Sci. Instrum., 77, 084101, 10.1063/1.2234855

Reader, 1969, J. Opt. Soc. Am., 59, 1189, 10.1364/JOSA.59.001189

Shafer, 1964, J. Opt. Soc. Am., 54, 879, 10.1364/JOSA.54.000879

Smalley, 1977, Acc. Chem. Res., 10, 139, 10.1021/ar50112a006

Taatjes, 2005, Science, 308, 1887, 10.1126/science.1112532

Westbrook, 2005, Proc. Combust. Inst., 30, 125, 10.1016/j.proci.2004.08.275

Westbrook, 2009, Combust. Flame, 156, 181, 10.1016/j.combustflame.2008.07.014

Yang, 2014, Chin. Phys. C, 38, 077002, 10.1088/1674-1137/38/7/077002

Zhan, 1998, J. Am. Soc. Mass Spectrom., 9, 1241, 10.1016/S1044-0305(98)00107-X

Zhang, 2012, Combust. Flame, 159, 905, 10.1016/j.combustflame.2011.09.005

Zhou, 2009, Rapid Commun. Mass Spectrom., 23, 3994, 10.1002/rcm.4339

Zhou, 2013, Rev. Sci. Instrum., 84, 014101, 10.1063/1.4773541