The vacuolar morphology protein VAC14 plays an important role in sexual development in the filamentous ascomycete Sordaria macrospora
Tóm tắt
The multiprotein Fab1p/PIKfyve-complex regulating the abundance of the phospholipid phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is highly conserved among eukaryotes. In yeast/mammals, it is composed of the phosphatidylinositol 3-phosphate 5-kinase Fab1p/PIKfyve, the PtdIns(3,5)P2 phosphatase Fig4p/Sac3 and the scaffolding subunit Vac14p/ArPIKfyve. The complex is located to vacuolar membranes in yeast and to endosomal membranes in mammals, where it controls the synthesis and turnover of PtdIns(3,5)P2. In this study, we analyzed the role and function of the Fab1p/PIKfyve-complex scaffold protein SmVAC14 in the filamentous ascomycete
Từ khóa
Tài liệu tham khảo
Andrade MA, Petosa C, O’Donoghue SI, Muller CW, Bork P (2001) Comparison of ARM and HEAT protein repeats. J Mol Biol 309:1–18. https://doi.org/10.1006/jmbi.2001.4624
Banerjee S, Kane PM (2020) Regulation of V-ATPase activity and organelle pH by phosphatidylinositol phosphate lipids. Front Cell Dev Biol 8:510. https://doi.org/10.3389/fcell.2020.00510
Beier A, Teichert I, Krisp C, Wolters DA, Kück U (2016) Catalytic subunit 1 of protein phosphatase 2A is a subunit of the STRIPAK complex and governs fungal sexual development. Mbio 2:2
Bernhards Y, Pöggeler S (2011) The phocein homologue SmMOB3 is essential for vegetative cell fusion and sexual development in the filamentous ascomycete Sordaria macrospora. Curr Genet 57:133–149. https://doi.org/10.1007/s00294-010-0333-z
Blank-Landeshammer B, Teichert I, Märker R, Nowrousian M, Kück U, Sickmann A (2019) Combination of proteogenomics with peptide de novo sequencing identifies new genes and hidden posttranscriptional modifications. Mbio. https://doi.org/10.1128/mBio.02367-19
Bloemendal S, Bernhards Y, Bartho K, Dettmann A, Voigt O, Teichert I, Seiler S, Wolters DA, Pöggeler S, Kück U (2012) A homologue of the human STRIPAK complex controls sexual development in fungi. Mol Microbiol 84:310–323. https://doi.org/10.1111/j.1365-2958.2012.08024.x
Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, Richardson L, Salazar GA, Williams L, Bork P, Bridge A, Gough J, Haft DH, Letunic I, Marchler-Bauer A, Mi H, Natale DA, Necci M, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A, Finn RD (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49:D344–D354. https://doi.org/10.1093/nar/gkaa977
Bonangelino CJ, Catlett NL, Weisman LS (1997) Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol Cell Biol 17:6847–6858. https://doi.org/10.1128/MCB.17.12.6847
Bonangelino CJ, Nau JJ, Duex JE, Brinkman M, Wurmser AE, Gary JD, Emr SD, Weisman LS (2002) Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156:1015–1028. https://doi.org/10.1083/jcb.200201002
Botelho RJ, Efe JA, Teis D, Emr SD (2008) Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Mol Biol Cell 19:4273–4286. https://doi.org/10.1091/mbc.E08-04-0405
Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72. https://doi.org/10.1038/nature05876
Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, Everett L, Lenk GM, McKenna-Yasek DM, Weisman LS, Figlewicz D, Brown RH, Meisler MH (2009) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84:85–88. https://doi.org/10.1016/j.ajhg.2008.12.010
Cingolani G, Petosa C, Weis K, Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399:221–229. https://doi.org/10.1038/20367
Cole L, Hyde G, Ashford A (1997) Uptake and compartmentalisation of fluorescent probes by Pisolithus tinctorius hyphae: evidence for an anion transport mechanism at the tonoplast but not for fluid-phase endocytosis. Protoplasma 199:18–29
Cole L, Orlovich DA, Ashford AE (1998) Structure, function, and motility of vacuoles in filamentous fungi. Fungal Genet Biol 24:86–100. https://doi.org/10.1006/fgbi.1998.1051
Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103:10352–10357. https://doi.org/10.1073/pnas.0601456103
Dahlmann TA, Terfehr D, Becker K, Teichert I (2021) Golden Gate vectors for efficient gene fusion and gene deletion in diverse filamentous fungi. Curr Genet 67:317–330. https://doi.org/10.1007/s00294-020-01143-2
de Lartigue J, Polson H, Feldman M, Shokat K, Tooze SA, Urbe S, Clague MJ (2009) PIKfyve regulation of endosome-linked pathways. Traffic 10:883–893. https://doi.org/10.1111/j.1600-0854.2009.00915.x
Dove SK, Cooke FT, Douglas MR, Sayers LG, Parker PJ, Michell RH (1997) Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390:187–192. https://doi.org/10.1038/36613
Dove SK, McEwen RK, Mayes A, Hughes DC, Beggs JD, Michell RH (2002) Vac14 controls PtdIns(3,5)P(2) synthesis and Fab1-dependent protein trafficking to the multivesicular body. Curr Biol 12:885–893. https://doi.org/10.1016/s0960-9822(02)00891-6
Dove SK, Dong K, Kobayashi T, Williams FK, Michell RH (2009) Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419:1–13. https://doi.org/10.1042/BJ20081950
Duex JE, Nau JJ, Kauffman EJ, Weisman LS (2006a) Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5:723–731. https://doi.org/10.1128/EC.5.4.723-731.2006
Duex JE, Tang F, Weisman LS (2006b) The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol 172:693–704. https://doi.org/10.1083/jcb.200512105
Efe JA, Botelho RJ, Emr SD (2005) The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. Curr Opin Cell Biol 17:402–408. https://doi.org/10.1016/j.ceb.2005.06.002
Efe JA, Botelho RJ, Emr SD (2007) Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol Biol Cell 18:4232–4244. https://doi.org/10.1091/mbc.e07-04-0301
Elleuche S, Pöggeler S (2009) Evolution of carbonic anhydrases in fungi. Curr Genet 55:211–222. https://doi.org/10.1007/s00294-009-0238-x
Engh I, Nowrousian M, Kück U (2007) Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora. FEMS Microbiol Lett 275:62–70. https://doi.org/10.1111/j.1574-6968.2007.00867.x
Esser K, Straub J (1958) Genetic studies on Sordaria macrospora Auersw, compensation and induction in gene-dependent developmental defects. Z Vererbungsl 89:729–746
Esser K 1982 Cryptogams: cyanobacteria, algae, fungi, lichens CUP archive
Ferguson CJ, Lenk GM, Meisler MH (2009) Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18:4868–4878. https://doi.org/10.1093/hmg/ddp460
Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259. https://doi.org/10.1046/j.1365-2818.2000.00708.x
Frey S, Reschka EJ, Pöggeler S (2015) Germinal center kinases SmKIN3 and SmKIN24 are associated with the Sordaria macrospora striatin-interacting phosphatase and kinase (STRIPAK) Complex. PLoS ONE 10:e0139163. https://doi.org/10.1371/journal.pone.0139163
Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD (1998) Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 143:65–79. https://doi.org/10.1083/jcb.143.1.65
Gary JD, Sato TK, Stefan CJ, Bonangelino CJ, Weisman LS, Emr SD (2002) Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13:1238–1251. https://doi.org/10.1091/mbc.01-10-0498
Groth A, Schmitt K, Valerius O, Herzog B, Pöggeler S (2021) Analysis of the putative nucleoporin POM33 in the filamentous fungus Sordaria macrospora. J Fungi 7:682. https://doi.org/10.3390/jof7090682
Ho CY, Alghamdi TA, Botelho RJ (2012) Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP2. Traffic 13:1–8. https://doi.org/10.1111/j.1600-0854.2011.01246.x
Ho CY, Choy CH, Wattson CA, Johnson DE, Botelho RJ (2015) The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole. J Biol Chem 290:9919–9928. https://doi.org/10.1074/jbc.M114.613984
Hwang J, Pallas DC (2014) STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 47:118–148. https://doi.org/10.1016/j.biocel.2013.11.021
Ikonomov OC, Sbrissa D, Shisheva A (2001) Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve. J Biol Chem 276:26141–26147. https://doi.org/10.1074/jbc.M101722200
Ikonomov OC, Sbrissa D, Fenner H, Shisheva A (2009a) PIKfyve-ArPIKfyve-Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis. J Biol Chem 284:35794–35806. https://doi.org/10.1074/jbc.M109.037515
Ikonomov OC, Sbrissa D, Ijuin T, Takenawa T, Shisheva A (2009b) Sac3 is an insulin-regulated phosphatidylinositol 3,5-bisphosphate phosphatase: gain in insulin responsiveness through Sac3 down-regulation in adipocytes. J Biol Chem 284:23961–23971. https://doi.org/10.1074/jbc.M109.025361
James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436
Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M, Petersen JL, Zhang Y, Park S, Duex JE, Goldowitz D, Meisler MH, Weisman LS (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J 27:3221–3234. https://doi.org/10.1038/emboj.2008.248
Jin N, Jin Y, Weisman LS (2017) Early protection to stress mediated by CDK-dependent PI3,5P2 signaling from the vacuole/lysosome. J Cell Biol 216:2075–2090. https://doi.org/10.1083/jcb.201611144
Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108
Kilaru S, Schuster M, Latz M, Guo M, Steinberg G (2015) Fluorescent markers of the endocytic pathway in Zymoseptoria tritici. Fungal Genet Biol 79:150–157. https://doi.org/10.1016/j.fgb.2015.03.019
Klix V, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Pöggeler S (2010) Functional characterization of MAT1-1-specific mating-type genes in the homothallic ascomycete Sordaria macrospora provides new insights into essential and nonessential sexual regulators. Eukaryot Cell 9:894–905. https://doi.org/10.1128/ec.00019-10
Kück U, Hoff B (2006) Application of the nourseothricin acetyltransferase gene (nat1) as dominant marker for the transformation of filamentous fungi. Fungal Genet Newsl 53:9–11
Kück U, Pöggeler S, Nowrousian M, Nolting N, Engh I (2009) Sordaria macrospora, a model system for fungal development physiology and genetics. Springer, Berlin, pp 17–39
Kück U, Beier AM, Teichert I (2016) The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi. Fungal Genet Biol 90:31–38. https://doi.org/10.1016/j.fgb.2015.10.001
Kück U, Radchenko D, Teichert I (2019) STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biol Chem. https://doi.org/10.1515/hsz-2019-0173
Lemaire JF, McPherson PS (2006) Binding of Vac14 to neuronal nitric oxide synthase: characterisation of a new internal PDZ-recognition motif. FEBS Lett 580:6948–6954. https://doi.org/10.1016/j.febslet.2006.11.061
Li SC, Diakov TT, Xu T, Tarsio M, Zhu W, Couoh-Cardel S, Weisman LS, Kane PM (2014) The signaling lipid PI(3,5)P(2) stabilizes V(1)-V(o) sector interactions and activates the V-ATPase. Mol Biol Cell 25:1251–1262. https://doi.org/10.1091/mbc.E13-10-0563
Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164. https://doi.org/10.1126/science.252.5009.1162
Malik HS, Eickbush TH, Goldfarb DS (1997) Evolutionary specialization of the nuclear targeting apparatus. Proc Natl Acad Sci U S A 94:13738–13742. https://doi.org/10.1073/pnas.94.25.13738
Märker R, Blank-Landeshammer B, Beier-Rosberger A, Sickmann A, Kück U (2020) Phosphoproteomic analysis of STRIPAK mutants identifies a conserved serine phosphorylation site in PAK kinase CLA4 to be important in fungal sexual development and polarized growth. Mol Microbiol 113:1053–1069. https://doi.org/10.1111/mmi.14475
Nicholas KB, Nicholas H (1997) GeneDoc: a tool for editing and annoting multiple sequence alignments.
Nicot AS, Fares H, Payrastre B, Chisholm AD, Labouesse M, Laporte J (2006) The phosphoinositide kinase PIKfyve/Fab1p regulates terminal lysosome maturation in Caenorhabditis elegans. Mol Biol Cell 17:3062–3074. https://doi.org/10.1091/mbc.e05-12-1120
Nowrousian M, Ringelberg C, Dunlap JC, Loros JJ, Kück U (2005) Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Mol Genet Genom 273:137–149. https://doi.org/10.1007/s00438-005-1118-9
Nowrousian M, Teichert I, Masloff S, Kück U (2012) Whole-genome sequencing of Sordaria macrospora mutants identifies developmental genes. G3 2:261–270. https://doi.org/10.1534/g3.111.001479
Penalva MA (2005) Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genet Biol 42:963–975. https://doi.org/10.1016/j.fgb.2005.09.004
Pöggeler S, Kück U (2004) A WD40 repeat protein regulates fungal cell differentiation and can be replaced functionally by the mammalian homologue striatin. Eukaryot Cell 3:232–240. https://doi.org/10.1128/EC.3.1.232-240.2004
Pöggeler S, Kück U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1–10. https://doi.org/10.1016/j.gene.2006.03.020
Pöggeler S, Masloff S, Hoff B, Mayrhofer S, Kück U (2003) Versatile EGFP reporter plasmids for cellular localization of recombinant gene products in filamentous fungi. Curr Genet 43:54–61. https://doi.org/10.1007/s00294-003-0370-y
Pöggeler S, Nowrousian M, Kück U (2006) Fruiting-body development in ascomycetes growth, differentiation and sexuality. Springer, Berlin, pp 325–355
Qiu S, Lavallee-Adam M, Cote M (2021) Proximity interactome map of the Vac14-Fig4 complex using BioID. J Proteome Res 20:4959–4973. https://doi.org/10.1021/acs.jproteome.1c00408
Reschka EJ, Nordzieke S, Valerius O, Braus GH, Pöggeler S (2018) A novel STRIPAK complex component mediates hyphal fusion and fruiting-body development in filamentous fungi. Mol Microbiol 110:513–532. https://doi.org/10.1111/mmi.14106
Robinson O, Dylus D, Dessimoz C (2016) Phylo.io: interactive viewing and comparison of large phylogenetic trees on the web. Mol Biol Evol 33:2163–2166. https://doi.org/10.1093/molbev/msw080
Rudge SA, Anderson DM, Emr SD (2004) Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol Biol Cell 15:24–36. https://doi.org/10.1091/mbc.e03-05-0297
Rusten TE, Rodahl LM, Pattni K, Englund C, Samakovlis C, Dove S, Brech A, Stenmark H (2006) Fab1 phosphatidylinositol 3-phosphate 5-kinase controls trafficking but not silencing of endocytosed receptors. Mol Biol Cell 17:3989–4001. https://doi.org/10.1091/mbc.e06-03-0239
Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D, Stenmark H (2007) ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 17:1817–1825. https://doi.org/10.1016/j.cub.2007.09.032
Rutherford AC, Traer C, Wassmer T, Pattni K, Bujny MV, Carlton JG, Stenmark H, Cullen PJ (2006) The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119:3944–3957. https://doi.org/10.1242/jcs.03153
Sambrook J, Fritsch E, Maniatis T (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York.
Sbrissa D, Ikonomov OC, Strakova J, Dondapati R, Mlak K, Deeb R, Silver R, Shisheva A (2004) A mammalian ortholog of Saccharomyces cerevisiae Vac14 that associates with and up-regulates PIKfyve phosphoinositide 5-kinase activity. Mol Cell Biol 24:10437–10447. https://doi.org/10.1128/MCB.24.23.10437-10447.2004
Sbrissa D, Ikonomov OC, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A (2007) Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem 282:23878–23891. https://doi.org/10.1074/jbc.M611678200
Sbrissa D, Ikonomov OC, Fenner H, Shisheva A (2008) ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol 384:766–779. https://doi.org/10.1016/j.jmb.2008.10.009
Schulze U, Vollenbroker B, Braun DA, Van Le T, Granado D, Kremerskothen J, Franzel B, Klosowski R, Barth J, Fufezan C, Wolters DA, Pavenstadt H, Weide T (2014) The Vac14-interaction network is linked to regulators of the endolysosomal and autophagic pathway. Mol Cell Proteomics 13:1397–1411. https://doi.org/10.1074/mcp.M113.034108
Schulze U, Vollenbröker B, Kuhnl A, Granado D, Bayraktar S, Rescher U, Pavenstadt H, Weide T (2017) Cellular vacuolization caused by overexpression of the PIKfyve-binding deficient Vac 14(L156R) is rescued by starvation and inhibition of vacuolar-ATPase. Biochim Biophys Acta Mol Cell Res 1864:749–759. https://doi.org/10.1016/j.bbamcr.2017.02.012
Shi Z, Jiao S, Zhou Z (2016) STRIPAK complexes in cell signaling and cancer. Oncogene 35:4549–4557. https://doi.org/10.1038/onc.2016.9
Shisheva A (2008) PIKfyve: Partners, significance, debates and paradoxes. Cell Biol Int 32:591–604. https://doi.org/10.1016/j.cellbi.2008.01.006
Stein V, Blank-Landeshammer B, Muntjes K, Märker R, Teichert I, Feldbrugge M, Sickmann A, Kück U (2020) The STRIPAK signaling complex regulates dephosphorylation of GUL1, an RNA-binding protein that shuttles on endosomes. PLoS Genet 16:e1008819. https://doi.org/10.1371/journal.pgen.1008819
Teichert I, Wolff G, Kück U, Nowrousian M (2012) Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genomics 13:511. https://doi.org/10.1186/1471-2164-13-511
Teichert I, Nowrousian M, Pöggeler S, Kück U (2014) The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development. Adv Genet 87:199–244. https://doi.org/10.1016/B978-0-12-800149-3.00004-4
Teichert I, Pöggeler S, Nowrousian M (2020) Sordaria macrospora: 25 years as a model organism for studying the molecular mechanisms of fruiting body development. Appl Microbiol Biotechnol 104:3691–3704. https://doi.org/10.1007/s00253-020-10504-3
Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354. https://doi.org/10.1073/pnas.76.9.4350
Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850. https://doi.org/10.1093/bioinformatics/17.9.849
Vicinanza M, D’Angelo G, Di Campli A, De Matteis MA (2008) Function and dysfunction of the PI system in membrane trafficking. EMBO J 27:2457–2470. https://doi.org/10.1038/emboj.2008.169
Voigt O, Pöggeler S (2013) Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora. Autophagy 9:33–49. https://doi.org/10.4161/auto.22398
Walz M, Kück U (1995) Transformation of Sordaria macrospora to hygromycin B resistance: characterization of transformants by electrophoretic karyotyping and tetrad analysis. Curr Genet 29:88–95. https://doi.org/10.1007/BF00313198
Werner A (2012) Functional analysis of the putative autophagy receptor SmNBR1 and the autophagic protein SmATG12 of the filamentous ascomycete Sordaria macrospora Master thesis. Georg-August Univerität Göttingen.
Werner A, Herzog B, Voigt O, Valerius O, Braus GH, Pöggeler S (2019) NBR1 is involved in selective pexophagy in filamentous ascomycetes and can be functionally replaced by a tagged version of its human homolog. Autophagy 15:78–97. https://doi.org/10.1080/15548627.2018.1507440
Werner A, Otte K, Stahlhut G, Hanke LM, Pöggeler S (2021) The glyoxysomal protease LON2 is involved in fruiting-body development, ascosporogenesis and stress resistance in Sordaria macrospora. J Fungi 7:82. https://doi.org/10.3390/jof7020082
Wilson ZN, Scott AL, Dowell RD, Odorizzi G (2018) PI(3,5)P2 controls vacuole potassium transport to support cellular osmoregulation. Mol Biol Cell 29:1718–1731. https://doi.org/10.1091/mbc.E18-01-0015
Yamamoto A, DeWald BD, Boronenkov IV, Anderson RA, Emr SD, Koshland D (1995) Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell 6:525–539. https://doi.org/10.1091/mbc.6.5.525
Zhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, Piper RC, Yang B, Nau JJ, Westrick RJ, Morrison SJ, Meisler MH, Weisman LS (2007) Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci U S A 104:17518–17523. https://doi.org/10.1073/pnas.0702275104