The utilization of positron emission tomography in the evaluation of renal health and disease

Clinical and Translational Imaging - Tập 10 Số 1 - Trang 59-69 - 2022
Kwame Anokye Amoabeng1, Sanna Laurila, Luis Eduardo Juárez-Orozco2, Anne Beate Langeland Marthinsen1, Dariusz Moczulski3, Eleni Rebelos4, Prince Dadson4
1Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
2Department of Cardiology, Heart and Lung Division, University Medical Centre Utrecht, Utrecht, The Netherlands
3Department of Internal Medicine and Nephrodiabetology, Medical University of Łódź, Łódź, Poland
4Turku PET Centre, University of Turku, Turku, Finland

Tóm tắt

Abstract Purpose Positron emission tomography (PET) is a nuclear imaging technique that uses radiotracers to visualize metabolic processes of interest across different organs, to diagnose and manage diseases, and monitor therapeutic response. This systematic review aimed to characterize the value of PET for the assessment of renal metabolism and function in subjects with non-oncological metabolic disorders. Methods This review was conducted and reported in accordance with the PRISMA statement. Research articles reporting “kidney” or “renal” metabolism evaluated with PET imaging between 1980 and 2021 were systematically searched in Medline/PubMed, Science Direct, and the Cochrane Library. Search results were exported and stored in RefWorks, the duplicates were removed, and eligible studies were identified, evaluated, and summarized. Results Thirty reports met the inclusion criteria. The majority of the studies were prospective (73.33%, n = 22) in nature. The most utilized PET radiotracers were 15O-labeled radio water (H215O, n = 14) and 18F-fluorodeoxyglucose (18F-FDG, n = 8). Other radiotracers used in at least one study were 14(R,S)-(18)F-fluoro-6-thia-heptadecanoic acid (18F-FTHA), 18F-Sodium Fluoride (18F-NaF), 11C-acetate, 68-Gallium (68Ga), 13N-ammonia (13N-NH3), Rubidium-82 (82Rb), radiolabeled cationic ferritin (RadioCF), 11C‐para-aminobenzoic acid (11C-PABA), Gallium-68 pentixafor (68Ga-Pentixafor), 2-deoxy-2-F-fluoro-d-sorbitol (F-FDS) and 55Co-ethylene diamine tetra acetic acid (55Co-EDTA). Conclusion PET imaging provides an effective modality for evaluating a range of metabolic functions including glucose and fatty acid uptake, oxygen consumption and renal perfusion. Multiple positron emitting radiolabeled racers can be used for renal imaging in clinical settings. PET imaging thus holds the potential to improve the diagnosis of renal disorders, and to monitor disease progression and treatment response.

Từ khóa


Tài liệu tham khảo

Ogobuiro I, Tuma F. Physiology, renal. In: StatPearls. Treasure Island: StatPearls Publishing LLC; 2021. NBK538339 [bookaccession]

Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis: Its importance in human glucose homeostasis. Diabetes Care 24(2):382–391

Gerich JE (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabetic Med 27:136–142

Joven J, Vilella E (1993) Lipoprotein heterogeneity in end-stage renal disease. Kidney Int 43:410–418

Webster AC, Bardhan M (2017) Chronic kidney disease. Lancet 389(10075):1238–1252

Guder WG, Wagner S, Wirthensohn G (1986) Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int 29:41–45

Hems R, Ross B (1980) The metabolic fate of lactate in renal cortical tubules. Biochem J 190:27–37

Song P, Onishi A, Koepsell H, Vallon V (2016) Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets 20(9):1109–1125

Blaine J, Chonchol M, Levi M (2015) Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol 10(7):1257–1272

Guertl B, Noehammer C, Hoefler G (2000) Metabolic cardiomyopathies. Int J Exp Pathol 81(6):349–372

Wang Y, Chen X, Song Y, Caballero B, Cheskin LJ (2008) Association between obesity and kidney disease: a systematic review and meta-analysis. Kidney Int 73(1):19–33

Klahr S, Levey AS, Beck GJ et al (1994) The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of diet in renal disease study group. N Engl J Med 330(13):877–884

Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S et al (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329(14):977–986

Slee AD (2012) Exploring metabolic dysfunction in chronic kidney disease. Nutr Metab (Lond) 9(1):1–16

Werner R, Xinyu C (2019) The next era of renal radionuclide imaging: Novel PET radiotracers. Eur J Nucl Med Mol Imaging 46(9):1773–1786

Juillard L, Janier MF, Fouque D et al (2000) Renal blood flow measurement by positron emission tomography using 15O-labeled water. Kidney Int 57(6):2511–2518

Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data generalizations. J Cereb Blood Flow Metab 5(4):584–590

Rebelos E, Immonen H, Bucci M et al (2019) Brain glucose uptake is associated with endogenous glucose production in obese patients before and after bariatric surgery and predicts metabolic outcome at follow-up. Diabetes Obes Metab 21(2):218–226

Oldgren J, Laurila S, Åkerblom A et al (2021) Effects of 6 weeks of treatment with dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on myocardial function and metabolism in patients with type 2 diabetes: A randomized, placebo-controlled, exploratory study. Diabetes Obes Metab 23:1505–1517

Immonen H, Hannukainen JC, Iozzo P et al (2014) Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. J Hepatol 60(2):377–383

Ng JM, Bertoldo A, Minhas DS et al (2014) Dynamic PET imaging reveals heterogeneity of skeletal muscle insulin resistance. J Clin Endocrinol Metab 99(1):E102–E106

Dadson P, Landini L, Helmio M et al (2016) Effect of bariatric surgery on adipose tissue glucose metabolism in different depots in patients with or without type 2 diabetes. Diabetes Care 39(2):292–299

Dadson P, Ferrannini E, Landini L et al (2017) Fatty acid uptake and blood flow in adipose tissue compartments of morbidly obese subjects with or without type 2 diabetes: effects of bariatric surgery. Am J Physiol Endocrinol Metab 313(2):E175–E182

Moher D, Shamseer L, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1–9

Institute JB (2020) Critical appraisal tools for use in JBI systematic reviews checklist for prevalence studies. The University of Adelaide, Adelaide

Barrios L, Bergstrom K (2016) Radiolabeled sugars used for PET and SPECT imaging. Curr Radiopharm 9:180–186

Inaba T, Yamashita M, Kawase Y, Nakahashi H, Watanabe H (1989) Quantitative measurement of renal plasma flow by positron emission tomography with oxygen-15 water. Tohoku J Exp Med 159(4):283–289

Nitzschem EU, Choi Y, Killion D, Hoh CK, Hawkins RA, Schelbert R (1993) Quantification and parametric imaging of renal cortical blood flow in vivo based on patlak graphical analysis. Kidney Int 44(5):985–996

Middlekauff HR, Nitzsche EU, Hamilton MA et al (1995) Evidence for preserved cardiopulmonary baroreflex control of renal cortical blood flow in humans with advanced heart failure: a positron emission tomography study. Circulation 92:395–401

Middlekauff HR, Nitzsche EU, Nguyen AH, Hoh CK, Gibbs GG (1997) Modulation of renal cortical blood flow during static exercise in humans. Circ Res 80(1):62–68

Middlekauff HR, Nitzsche EU, Hoh CK et al (2000) Exaggerated renal vasoconstriction during exercise in heart failure patients. Circulation 101(7):784–789

Juillard L, Janier MF, Fouque D et al (2002) Dynamic renal blood flow measurement by positron emission tomography in patients with CRF. Am J Kidney Dis 40(5):947–954. https://doi.org/10.1053/ajkd.2002.36325

Kudomi N, Koivuviita N, Liukko KE et al (2009) Parametric renal blood flow imaging using [15O]H2O and PET. Eur J Nucl Med Mol Imaging 36(4):683–691

Damkjær M, Vafaee M, Braad PE, Petersen H, Høilund-Carlsen PF, Bie P (2012) Renal cortical and medullary blood flow during modest saline loading in humans. Acta physiol 205(4):472–483

Green MA, Hutchins GD (2011) Positron emission tomography (PET) assessment of renal perfusion. Semin Nephrol 31(3):291–299

Koivuviita N, Liukko K, Kudomim N et al (2012) The effect of revascularization of renal artery stenosis on renal perfusion in patients with atherosclerotic renovascular disease. Nephrol Dialysis Transp 27(10):3843–3848

Normand G, Lemoine S, Le Bars D et al (2019) PET [(11)C]acetate is also a perfusion tracer for kidney evaluation purposes. Nucl Med Biol 76–77:10–14

Rebelos E, Dadson P, Oikonen V et al (2019) Renal hemodynamics and fatty acid uptake: effects of obesity and weight loss. Am J Physiol Endocrinol Metab 317(5):E871–E878

Päivärinta J, Oikonen V, Räisänen-Sokolowski A et al (2019) Renal vascular resistance is increased in patients with kidney transplant. BMC Nephrol 20(1):437

Lacy J, Guerrero L, Christian B, Stone C (2010) Renal perfusion with 62cu-ETS in comparison with 15O-water PET. J Nucl Med 51(supplement 2):587–587

Tahari AK, Bravo PE, Rahmim A, Bengel FM (2014) Initial human experience with rubidium-82 renal PET/CT imaging. J Med Imaging Radiat Oncol 58:25–31

Keramida G, Gregg S, Peters AM (2020) Stimulation of the hepatic arterial buffer response using exogenous adenosine: hepatic rest/stress perfusion imaging. Eur Radiol 30(11):5852–5861

Guglielmo P, Ekström S, Strand R et al (2020) Validation of automated whole-body analysis of metabolic and morphological parameters from an integrated FDG-PET/MRI acquisition. Sci Rep 10(1):5331

Jadoul A, Lovinfosse P, Bouquegneau A et al (2020) Observer variability in the assessment of renal F-FDG uptake in kidney transplant recipients. Sci Rep 10(1):4617

Lovinfosse P, Weekers L, Bonvoisin C et al (2016) Fluorodeoxyglucose F(18) positron emission tomography coupled with computed tomography in suspected acute renal allograft rejection. Am J Transplant 16(1):310–316

Werner RA, Ordonez AA, Sanchez-Bautista J et al (2019) Novel functional renal PET imaging with 18F-FDS in human subjects. Clin Nucl Med 44(5):410–411

Derlin T, Gueler F, Bräsen JH et al (2017) Integrating MRI and chemokine receptor CXCR4-targeted PET for detection of leukocyte infiltration in complicated urinary tract infections after kidney transplantation. J Nucl Med 58(11):1831–1837

Geist B, Baltzer P, Fueger B, Hamboeck M, Hacker M, Staudenherz A (2018) Assessing the kidney function parameters glomerular filtration rate and effective renal plasma flow dynamic FDG-PET/MRI in healthy subjects. EJNMMI Res 8:37

Qiao H, Bai J, Chen Y, Tian J (2008) Modeling the excretion of FDG in human kidneys using dynamic PET. Comput Biol Med 38(11):1171–1176. https://doi.org/10.1016/j.compbiomed.2008.09.006

Rasul S, Geist BK, Brath H et al (2020) Response evaluation of SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus using 18F-FDG PET/MRI. BMJ Open Diabetes Res Care 8(1):e001135

Pajenda S, Rasul S, Hacker M, Wagner L, Geist BK (2020) Dynamic 2-deoxy-2[18F] fluoro-D-glucose PET/MRI in human renal allotransplant patients undergoing acute kidney injury. Sci Rep 10(1):8270

Minamimoto R, Takahashi N, Inoue T (2007) FDG-PET of patients with suspected renal failure: Standardized uptake values in normal tissues. Ann Nucl Med 21(4):217–222

Yamashita M, Inaba T, Kawase Y et al (1988) Quantitative measurement of renal function using ga-68-EDTA. Tohoku J Exp Med 155(2):207–208

Ruiz-Bedoya CA, Ordonez AA, Werner RA et al (2020) C-PABA as a PET radiotracer for functional renal imaging: preclinical and first-in-human study. J Nucl Med 61(11):1665–1671

Baldelomar EJ, Reichert DE, Shoghi KI et al (2021) Mapping nephron mass in vivo using positron emission tomography. Am J Physiol Renal Physiol 320(2):F183–F192 (Epub 2020 Dec 7)

Oliveira-Santos M, McMahon G, Castelo-Branco M et al (2020) Renal artery wall 18F-NaF activity and glomerular filtration rate: an exploratory analysis in a high cardiovascular risk population. Nucl Med Commun 41(2):126–132

Boss M, Buitinga M, Jansen TJP, Brom M, Visser EP, Gotthardt M (2020) PET-based human dosimetry of 68ga-NODAGA-exendin-4, a tracer for β-cell imaging. J Nucl Med 61(1):112–116

Naganawa M, Lim K, Nabulsi NB et al (2018) Evaluation of pancreatic VMAT2 binding with active and inactive enantiomers of FFP-DTBZ in healthy subjects and patients with type 1 diabetes. Mol Imaging Biol 20(5):835–845

Garg PK, Lokitz SJ, Truong L et al (2017) Pancreatic uptake and radiation dosimetry of 6-[18F]fluoro-L-DOPA from PET imaging studies in infants with congenital hyperinsulinism. PLoS ONE 12(11):e0186340

Roivainen A, Någren K, Hirvonen J et al (2009) Whole-body distribution and metabolism of [N-methyl-11C](R)-1-(2-chlorophenyl)-N-(1methylpropyl)-3-isoquinolinecarboxamide in humans; an imaging agent for in vivo assessment of peripheral benzodiazepine receptor activity with positron emission tomography. Eur J Nucl Med Mol Imaging 36(4):671–682

Kumar A, Muzik O, Chugani D, Chakraborty P, Chugani HT (2009) PET-derived biodistribution and dosimetry of the benzodiazepine receptor-binding radioligand (11)C-(R)-PK11195 in children and adults. J Nucl Med 51(1):139–144

McParland BJ, Miller MP, Spinks TJ, Kenny LM, Osman S, Cohen PS (2008) The biodistribution and radiation dosimetry of the arg-gly-asp peptide 18F-AH111585 in healthy volunteers. J Nucl Med 49(10):1664–1667

Ribeiro MJ, Ricard M, Lièvre MA, Bourgeois S, Emond P, Syrota A (2007) Whole-body distribution and radiation dosimetry of the dopamine transporter radioligand [(11)C]PE2I in healthy volunteers. Nucl Med Biol 34(4):465–470

Scheinin NM, Tolvanen TK, Wilson IA, Arponen EM, Någren KA, Rinne JO (2007) Biodistribution and radiation dosimetry of the amyloid imaging agent 11C-PIB in humans. J Nucl Med 48(1):128–133

Nishii R, Higashi T, Kagawa S, Okuyama C, Saji H, Yamauchi H (2018) 18F-FPYBF-2, a new F-18 labelled amyloid imaging PET tracer: biodistribution and radiation dosimetry assessment of first-in-man 18F-FPYBF-2 PET imaging. Ann Nucl Med 32(4):256–263

Gormsen LC, Sundelin EI, Jensen JB et al (2016) In vivo imaging of human 11C-metformin in peripheral organs: dosimetry, biodistribution, and kinetic analyses. J Nucl Med 57(12):1920–1926

Roivainen A, Rinne J, Virta J et al (2004) Biodistribution and blood metabolism of 1–11C-methyl-4-piperidinyl n-butyrate inhumans: an imaging agent for in vivo assessment of butyrylcholinesterase activity with PET. J Nucl Med 45(12):2032–2039

Jamar F, Barone R, Mathieu I et al (2003) 86Y-DOTA0)-D-Phe1-Tyr3-octreotide (SMT487)—a phase 1 clinical study: Pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging 30(4):510–518

Ebenhan T, Sathekge MM, Lengana T et al (2018) Ga-NOTA-functionalized ubiquicidin: cytotoxicity, biodistribution, radiation dosimetry, and first-in human PET/CT imaging of infections. J Nucl Med 59(2):334–339

Champion C, Loirec C (2007) Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotope used in PET. Phys Med Biol 52:6605–6625

Odudu A, Nery F, Harteveld AA et al (2018) Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 33(suppl_2):ii15–ii21

Iskandrian AE, Dilsizian V, Garcia EV et al (2018) Myocardial perfusion imaging: lessons learned and work to be done-update. J Nucl Cardiol 25(1):39–52

Meury L, Noël J, Tejedor A, Sénécal J, Gougoux A, Vinay P (1994) Glucose metabolism in dog inner medullary collecting ducts. Ren Physiol Biochem 17(5):246–266

Tian Z, Liang M (2021) Renal metabolism and hypertension. Nat Commun 12(1):1–12

Nuutila P, Koivisto VA, Knuuti J et al (1992) Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest 89(6):1767–1774

Qiao H, Bai J, Chen Y, Tian J (2008) Modeling the excretion of FDG in human kidneys using dynamic PET. Comput Biol Med 38(11–12):1171–1176

Kaufman DP, Basit H, Knohl SJ. Physiology, glomerular filtration rate. In: StatPearls. Treasure Island: StatPearls Publishing LLC; 2021. NBK500032 [bookaccession].

Landau BR, Spring-Robinson CL, Muzic RF Jr et al (2007) 6-fluoro-6-deoxy-D-glucose as a tracer of glucose transport. Am J Physiol Endocrinol Metab 293(1):E237–E245

Scafoglio C, Hirayama BA, Kepe V et al (2015) Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A 112(30):E4111–E4119

Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

Latva-Rasku A, Honka MJ, Kullberg J et al (2019) The SGLT2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: a randomized, double-blind, placebo-controlled study with 8-week treatment in type 2 diabetes patients. Diabetes Care 42(5):931–937

Phoon RK (2012) Chronic kidney disease in the elderly—assessment and management. Aust Fam Physician 41(12):940–944

Kode V, Karsch H, Osman MM, Muzaffar R (2017) Impact of renal failure on F18-FDG PET/CT scans. Front Oncol 7:155

Bach-Gansmo T, Dybvik J, Adamsen T, Naum A (2012) Variation in urinary excretion of FDG, yet another uncertainty in quantitative PET. Acta Radiol Short Rep 1(8):1–3. https://doi.org/10.1258/arsr.2012.120038 (eCollection 2012)

Toriihara A, Kitazume Y, Nishida H, Kubota K, Nakadate M, Tateishi U (2015) Comparison of FDG-PET/CT images between chronic renal failure patients on hemodialysis and controls. Am J Nucl Med Mol Imaging 5(2):204–211

Hofman M, Binns D, Johnston V et al (2015) 68Ga-EDTA PET/CT imaging and plasma clearance for glomerular filtration rate quantification: comparison to conventional 51Cr-EDTA. J Nucl Med 56(3):405–409

Goethals P, Volkaert A, Vandewielle C, Dierckx R, Lameire N (2000) 55Co-EDTA for renal imaging using positron emission tomography (PET): a feasibility study. Nucl Med Biol 27(1):77–81

Tek CK, Chennu KK, Amancharla YL, Manthri GR, Rapur R, Vishnubotla SK (2017) Utility of 18 F-FDG PET/CT scan to diagnose the etiology of fever of unknown origin in patients on dialysis. Hemodial Int 21(2):224–231

Lawal IO, Popoola GO, Lengana T, Ankrah AO, Ebenhan T, Sathekge M (2019) Diagnostic utility of F-FDG PET/CT in fever of unknown origin among patients with end-stage renal disease treated with renal replacement therapy. Hellenic J Nucl Med 22(1):70–75

Bleeker-Rovers CP, de Sévaux RG, van Hamersvelt HW, Corstens FH, Oyen WJ (2003) Diagnosis of renal and hepatic cyst infections by 18-F-fluorodeoxyglucose positron emission tomography in autosomal dominant polycystic kidney disease. Am J Kidney Dis 41(6):E18-21

Fu Z, Li Z, Huang J et al (2016) High (18)F-FDG uptake in urinary calculi on PET/CT: An unrecognized non-malignant accumulation. Eur J Radiol 85(8):1395–1399

Hanssen O, Erpicum P, Lovinfosse P et al (2017) Non-invasive approaches in the diagnosis of acute rejection in kidney transplant recipients. Part I. in vivo imaging methods. Clin Kidney J 10(1):97–105

Reuter S, Schnockel U, Schroter R et al (2009) Non-invasive imaging of acute renal allograft rejection in rats using small animal F-FDG-PET. PLoS ONE 4:e5296

Aaltonen L, Koivuviita N, Seppänen M et al (2020) Correlation between (18)F-sodium fluoride positron emission tomography and bone histomorphometry in dialysis patients. Bone 134:11526