The use of the multi-model ensemble in probabilistic climate projections

Claudia Tebaldi1, Reto Knutti2
1Institute for the Study of Society and Environment, National Center for Atmospheric Research, Boulder, CO 80304, USA. [email protected]
2Institute for Atmospheric and Climate Science, Swiss Federal Institute of TechnologyUniversitätstrasse 16 (CHN N 12.1), 8092 Zürich, Switzerland

Tóm tắt

Recent coordinated efforts, in which numerous climate models have been run for a common set of experiments, have produced large datasets of projections of future climate for various scenarios. Those multi-model ensembles sample initial condition, parameter as well as structural uncertainties in the model design, and they have prompted a variety of approaches to quantify uncertainty in future climate in a probabilistic way. This paper outlines the motivation for using multi-model ensembles, reviews the methodologies published so far and compares their results for regional temperature projections. The challenges in interpreting multi-model results, caused by the lack of verification of climate projections, the problem of model dependence, bias and tuning as well as the difficulty in making sense of an ‘ensemble of opportunity’, are discussed in detail.

Từ khóa


Tài liệu tham khảo

10.1038/35036559

10.1029/2000JD000259

10.1016/j.ocemod.2003.12.004

Annan J.D, 2005, Efficiently constraining climate sensitivity with paleoclimate simulations, Sci. Online Lett. Atmos, 1, 181

10.1111/j.1600-0870.2004.00039.x

Berger J.O Statistical decision theory and Bayesian analysis. 2nd edn. 1993 New York NY:Springer p. 617.

10.1175/JCLI3757.1

10.3402/tellusa.v57i3.14669

10.1007/s00382-006-0121-0

10.15447/sfews.2005v3iss1art6

10.1007/s00382-003-0350-4

10.1007/s10236-003-0036-9

10.1029/94JC00572

10.1126/science.1064419

10.1029/2005GL023977

10.1029/2004GL022241

Furrer R. Sain S. Nychka D. & Meehl G. In press. Multivariate Bayesian analysis of atmosphere–ocean general circulation models. Environ. Ecol. Stat.

10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2

10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2

10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2

10.1029/2002GL015836

10.1007/PL00013733

10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2

10.1029/2003GL017130

10.1137/S106482750342670X

10.1175/JCLI3864.1

Hagedorn R, 2005, The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept, Tellus A, 57, 219

10.1038/nature04679

IPCCp. 881 Eds. Houghton J.T Ding Y Griggs D.J Noguer M van der Linden P.J Xiaosu D Dai X Maskell K& Johnson C.A. 2001 Cambridge UK:Cambridge University Press.

10.1130/G21654.1

10.1038/416719a

10.1007/s00382-003-0345-1

10.1029/2005GL023294

10.1175/JCLI3865.1

10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2

10.1007/PL00013736

10.1175/JCLI3895.1

10.3354/cr029041

10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2

Meinshausen M, 2005, Avoiding dangerous climate change, 265

10.1029/2006GL025779

10.1038/nature02771

Nakićenović N et al. Special report on emission scenarios: Intergovernmental Panel on Climate Change . 2000 Cambridge UK:Cambridge University Press.

10.1175/1520-0442(2003)016<0883:COCOAU>2.0.CO;2

10.1175/JCLI3748.1

Otto-Bliesner B. L. Marshall S. J. Overpeck J. T. Miller G. H. Hu A. & CAPE Last Interglacial Project members. 2006 b Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311 1751–1753. (doi:10.1126/science.1120808).

10.1051/epn:2005202

10.1038/415512a

10.1146/annurev.earth.33.092203.122552

10.1098/rstb.2005.1750

10.1029/2005GL024452

10.1007/s003820050160

10.1175/1520-0442(2001)014<3212:APADMA>2.0.CO;2

10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2

10.1175/MWR2818.1

Rougier J. In press. Probabilistic inference for future climate using an ensemble of climate model evaluations. Clim. Change .

10.1038/35075167

Smith R. Tebaldi C. Nychka D. & Mearns L. Submitted. Bayesian modeling of uncertainty in ensembles of climate models.

10.1038/nature03301

10.1038/416723a

10.1029/2004GL021276

10.1175/JCLI3363.1

10.1038/nature04503

10.1007/s00382-006-0126-8

10.1126/science.1061604

10.1029/2005GL022421

10.1029/2005JD006118

10.1175/1520-0442(2003)016<3834:IOTMST>2.0.CO;2