The use of rats and mice as animal models inex vivobone growth and development studies

Bone and Joint Research - Tập 5 Số 12 - Trang 610-618 - 2016
Adamu Abdul Abubakar1, Noordin Mohamed Mustapha1, T. I. Azmi1, Ubedullah Kaka1, Loqman Mohamad Yusof1
1Department of Pre-Clinical Veterinary Sciences, Universiti Putra Malaysia, Malaysia

Tóm tắt

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.

Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.

Từ khóa


Tài liệu tham khảo

Lidgren L, 2003, J Rheumatol Suppl, 67, 4

Woolf AD, 2003, Bull World Health Organ, 81, 646

No authors listed. Bone health and osteoporosis: a report of the Surgeon General. https://www.ncbi.nlm.nih.gov/books/NBK45513/ (date last accessed 25 October 2016).

Symmons D, Mathers C, Pfleger B. The global burden of rheumatoid arthritis in the year 2000. http://www.who.int/healthinfo/statistics/bod_rheumatoidarthritis.pdf (date last accessed 25 November 2016).

Wood MW, 2007, AATEX, 14, 303

10.1177/026119291504300409

10.1016/j.apsb.2012.10.004

Denayer T, 2014, New Horiz Transl Med, 2, 5

10.1016/j.jsps.2013.11.002

10.1016/j.ejphar.2015.03.040

Jos VS, Jones D, Richards RG, et al. Culture system for bone metabolic studies. Microgravity Applications Programme; 2005:306-315.

10.1089/ten.a.2007.0051

10.22203/eCM.v013a01

10.1007/BF02060281

10.1016/8756-3282(86)90150-X

10.1002/cyto.a.22680

10.22203/eCM.v026a07

10.1093/ps/79.7.994

10.1196/annals.1389.003

10.1093/ps/79.7.990

10.1359/jbmr.1997.12.5.795

10.1016/j.actbio.2014.06.011

10.1002/jbmr.5650061212

10.1113/jphysiol.1995.sp020701

10.1016/S0021-9290(99)00143-8

Smith EL, 2000, 22nd Annual Meeting of ASBMR

10.1002/jcp.1077

10.1016/S0736-0266(01)00013-4

Smith EL, 2003, Eur Cell Mater, 5, 48, 10.22203/eCM.v005a05

10.22203/eCM.v011a07

10.1002/jor.20809

10.2106/JBJS.G.00857

Otsuki S, 2010, J Orthop Res, 28, 96, 10.1002/jor.20944

10.1177/0954411913486855

Templeton ZS, 2015, J Vis Exp, 97, e52656

10.1042/bj0230767

Fell HB. Biochemistry and physiology of bone. Bource GH; New York Academic Press, ed. 1956:402.

10.1007/BF01002713

10.1002/jbmr.5650050113

10.1007/BF00582172

10.1016/0169-6009(92)90840-A

10.1083/jcb.131.2.483

10.1089/ten.tec.2012.0033

Smith EL, 2015, PLoS One, 10, e0121653, 10.1371/journal.pone.0121653

10.1177/00220345770560082401

10.1677/JOE-09-0307

10.1371/journal.pone.0078306

10.1172/JCI105117

10.1177/00220345660450030901

Richards RG, 2007, ALTEX, 24, 56

10.1089/ten.tec.2012.0132

10.1016/S0074-7696(08)61038-4

10.1210/endo-85-3-446

10.1677/joe.0.0430033

10.3109/17453677908991285

10.1007/BF02405027

10.1172/JCI111156

10.1016/0221-8747(84)90028-6

10.1073/pnas.84.7.2024

10.1172/JCI113647

10.1016/0169-6009(92)90798-I

10.1074/jbc.M305518200

10.1016/j.bone.2006.12.066

10.1089/ten.tec.2009.0698

10.1002/jcb.24408

10.1159/000146118

10.1155/2012/160265

10.1016/j.biomaterials.2011.10.046

10.1002/jcp.24464

10.1007/978-1-59745-104-8_3

10.1126/science.122.3168.501

Lynch RG, 2008, ASIP Pathway, 3, 31

10.1243/09544119JEIM802

10.1089/ten.2006.12.2367

10.1073/pnas.0402532101

10.4161/biom.22170

10.1155/2013/762132

Partap S, Plunkett NA, O’Brien FJ. Bioreactors in tissue engineering, tissue engineering. InTech 2010 http://www.intechopen.com/books/tissue-engineering/bioreactors-in-tissue-engineering (date last accessed 11 October 2016).

10.1089/ten.teb.2010.0612

10.3389/fbioe.2015.00010

Pound JC, 2006, J Bone Joint Surg [Br], 405

10.1089/ten.tea.2007.0277

10.1016/j.biomaterials.2009.04.026

10.5301/IJAO.2011.6333

10.3390/pr2020494

10.1002/biot.201400813

10.1109/TNB.2006.880823

10.1016/j.jbiomech.2007.03.002

10.2174/157488808786733962

10.1016/j.actbio.2009.09.017

10.1016/j.bone.2013.01.010

10.1002/adma.200390047

10.1039/b400486h

Dohle DS, 2009, J Vis Exp, 33, e1620

10.1089/ten.2004.10.1037

10.1371/journal.pone.0032549

10.3390/ijms13089959

10.1038/nprot.2006.13

10.1016/S0076-6879(08)02802-4

Feflea S, 2012, In Vivo, 26, 793

10.21769/BioProtoc.913

10.3390/ph3030482

10.1186/1756-0500-3-58

10.1016/j.canlet.2012.07.023

10.1007/s11259-012-9535-9

10.1186/s12575-015-0022-x

10.1093/humrep/15.3.584

10.3727/096368912X658827

10.4236/jbise.2010.31003

Li M, 2015, J Vis Exp, 104, e52411

10.1002/ar.21542

Yalcin HC, 2010, J Vis Exp, 44

10.1016/j.ydbio.2011.08.004

10.1371/journal.pone.0130935

10.1002/jbm.b.32653

10.1016/j.injury.2012.06.004

10.1002/jbm.a.34010

10.1155/2013/960958

10.1089/ten.2006.12.3285

Parikh MR, J Vis Exp, 2014, 8

10.1089/ten.tea.2007.0321

10.1016/j.jbiomech.2004.08.009

10.1016/j.bone.2005.03.008

10.22203/eCM.v023a02

10.1016/j.tcb.2003.12.003

10.1177/154405910708601006

10.1016/j.biocel.2007.06.009

10.1530/JOE-14-0584

10.1002/mrm.22395

10.4248/BR201303001