The use and QA of biologically related models for treatment planning: Short report of the TG-166 of the therapy physics committee of the AAPM

Medical Physics - Tập 39 Số 3 - Trang 1386-1409 - 2012
X. Allen Li1, M. Alber2, Joseph O. Deasy3, Andrew Jackson3, Kyung‐Wook Jee4, Lawrence B. Marks5, Mary K. Martel6, Charles S. Mayo7, Vitali Moiseenko8, A E Nahum9, Andrzej Niemierko4, Vladimir A. Semenenko1, Ellen Yorke3
1Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
2Clinic for Radio-oncology, University of Munich, 72076 Tübingen, Germany
3Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
4Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114
5Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599
6Radiation Physics, UT MD Anderson Cancer Center, Houston, Texas 77030
7Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905
8Physics, Vancouver Cancer Center, Vancouver, British Columbia V5Z 4E6 Canada
9Department of Physics, Clatterbridge Centre for Oncology, Wirral, Merseyside CH63 4JY United Kingdom

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ling, 2005, Over the next decade the success of radiation treatment planning will be judged by the immediate biological response of tumor cells rather than by surrogate measures such as dose maximization and uniformity, Med. Phys., 32, 2189, 10.1118/1.1930908

Graham, 1999, Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small lung cancer (NSCLC), Int. J. Radiat. Oncol., Biol., Phys., 45, 323, 10.1016/S0360-3016(99)00183-2

Marks, 2010, Radiation dose-volume effects in the lung, Int. J. Radiat. Oncol., Biol., Phys., 76, S70, 10.1016/j.ijrobp.2009.06.091

Deasy, 1997, Multiple local minima in radiotherapy optimization problems with dose-volume constraints, Med. Phys., 24, 1157, 10.1118/1.598017

Wu, 2002, Multiple local minima in IMRT optimization based on dose-volume criteria, Med. Phys., 29, 1514, 10.1118/1.1485059

Stewart, 2007, BGRT: Biologically guided radiation therapy-The future is fast approaching!, Med. Phys., 34, 3739, 10.1118/1.2779861

Brahme, 1999, Optimized radiation therapy based on radiobiological objectives, Semin. Radiat. Oncol., 9, 35, 10.1016/S1053-4296(99)80053-8

Ling, 2000, Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformality, Int. J. Radiat. Oncol., Biol., Phys., 47, 551, 10.1016/S0360-3016(00)00467-3

Yang, 2005, Towards biologically conformal radiation therapy (BCRT): Selective IMRT dose escalation under the guidance of spatial biology distribution, Med. Phys., 32, 1473, 10.1118/1.1924312

Bentzen, 2005, Theragnostic imaging for radiation oncology: Dose-painting by numbers, Lancet Oncol., 6, 112, 10.1016/S1470-2045(05)01737-7

Kim, 2006, Risk-Adaptive Optimization: Selective Boosting of high-risk tumor subvolumes, Int J. Radiat. Oncol., Biol., Phys., 66, 1528, 10.1016/j.ijrobp.2006.08.032

Søvik, 2007, Radiotherapy adapted to spatial and temporal variability in tumor hypoxia, Int. J. Radiat. Oncol., Biol., Phys., 68, 1496, 10.1016/j.ijrobp.2007.04.027

www.AAPM.org

Niemierko, 1997, Reporting and analyzing dose distributions: A concept of equivalent uniform dose, Med. Phys., 24, 103, 10.1118/1.598063

Niemierko, 1999, A generalized concept of equivalent uniform dose (EUD), Med. Phys., 26, 1101

Choi, 2002, The generalized equivalent uniform dose function as a basis for intensity-modulated treatment planning, Phys. Med. Biol., 47, 3579, 10.1088/0031-9155/47/20/302

Romeijn, 2004, A unifying framework for multi-criteria fluence map optimization models, Phys. Med. Biol., 49, 1991, 10.1088/0031-9155/49/10/011

Alber, 2007, Intensity modulated radiation therapy planning by use of a barrier-penalty multiplier method, Optimization, Methods and Software (OMS), 22, 391

Wu, 2003, Intensity-modulated radiotherapy optimization with gEUD-guided dose-volume objectives, Phys. Med. Biol., 48, 279, 10.1088/0031-9155/48/3/301

Mihailidis, 2010, Superiority of equivalent uniform dose (EUD)-based optimization for breast and chest wall, Med. Dosim., 35, 67, 10.1016/j.meddos.2009.03.002

Källman, 1992, An algorithm for maximizing the probability of complication-free tumour control in radiation therapy, Phys. Med. Biol., 37, 871, 10.1088/0031-9155/37/4/004

Wu, 2002, Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose, Int. J. Radiat. Oncol., Biol., Phys., 52, 224, 10.1016/S0360-3016(01)02585-8

De Gersem, 1999, Inhomogeneous target-dose distributions: A dimension more for optimization?, Int. J. Radiat. Oncol., Biol., Phys., 44, 461, 10.1016/S0360-3016(98)00464-7

QUANTEC, 2010, Int. J. Radiat. Oncol. Biol. Phys., 76

Benedict, 2010, Stereotactic body radiation therapy: The report of AAPM Task Group 101, Med Phys., 37, 4078, 10.1118/1.3438081

Kawrakow, 2004, The effect of Monte Carlo statistical uncertainties on the evaluation of dose distributions in radiation treatment planning, Phys. Med. Biol., 49, 1549, 10.1088/0031-9155/49/8/012

Ten Haken, 2006, Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma: In regards to Xu et al. (Int J Radiat Oncol Biol Phys 2006;65:189-195), Int. J. Radiat. Oncol., Biol., Phys., 66, 1272, 10.1016/j.ijrobp.2006.08.003

Koh, 2006, Clinical dose-volume histogram analysis in predicting radiation pneumonitis in Hodgkin's lymphoma, Int. J. Radiat. Oncol., Biol., Phys., 66, 223, 10.1016/j.ijrobp.2006.03.063

Lyman, 1985, Complication probability as assessed from dose-volume histograms, Radiat. Res. Suppl., 8, S13, 10.2307/3583506

Kutcher, 1989, Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method, Int. J. Radiat. Oncol., Biol., Phys., 16, 1623, 10.1016/0360-3016(89)90972-3

Dawson, 2002, Analysis of radiation-induced liver disease using the Lyman NTCP model, Int. J. Radiat. Oncol., Biol., Phys., 53, 810, 10.1016/S0360-3016(02)02846-8

Dawson, 2002, Int. J. Radiat. Oncol., Biol., Phys., 53, 1422, 10.1016/S0360-3016(02)02846-8

Seppenwoolde, 2003, Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability, Int. J. Radiat. Oncol., Biol., Phys., 55, 724, 10.1016/S0360-3016(02)03986-X

Xu, 2006, Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma, Int. J. Radiat. Oncol., Biol., Phys., 65, 189, 10.1016/j.ijrobp.2005.11.034

Zaider, 1998, A little to a lot or a lot to a little: Is NTCP always minimized in multiport therapy?, Int. J. Radiat. Oncol., Biol., Phys., 41, 945, 10.1016/S0360-3016(98)00128-X

Moiseenko, 2000, Normal tissue complication probabilities: Dependence on choice of biological model and dose-volume histogram reduction scheme, Int. J. Radiat. Oncol., Biol., Phys., 46, 983, 10.1016/S0360-3016(99)00473-3

Muren, 2001, Can dose-response models predict reliable normal tissue complication probabilities in radical radiotherapy of urinary bladder cancer? The impact of alternative radiation tolerance models and parameters, Int. J. Radiat. Oncol., Biol., Phys., 50, 627, 10.1016/S0360-3016(01)01464-X

Sanchez-Nieto, 1999, The delta-TCP concept: A clinically useful measure of tumor control probability, Int. J. Radiat. Oncol., Biol., Phys., 44, 369, 10.1016/S0360-3016(99)00029-2

Tomé, 2000, Selective boosting of tumor subvolumes, Int. J. Radiat. Oncol., Biol., Phys., 48, 593, 10.1016/S0360-3016(00)00666-0

Tomé, 2002, On cold spots in tumor subvolumes, Med. Phys., 29, 1590, 10.1118/1.1485060

Okunieff, 1995, Radiation dose-response of human tumors, Int. J. Radiat. Oncol., Biol., Phys., 32, 1227, 10.1016/0360-3016(94)00475-Z

Emami, 1991, Tolerance of normal tissue to therapeutic irradiation, Int. J. Radiat. Oncol., Biol., Phys., 21, 109, 10.1016/0360-3016(91)90171-Y

Semenenko, 2008, Evaluation of a commercial biologically based IMRT treatment planning system, Med. Phys., 35, 5851, 10.1118/1.3013556

Qi, 2009, Improved critical structure sparing with biologically-based IMRT optimization, Med. Phys., 36, 1790, 10.1118/1.3116775

Kutcher, 1994, Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40, Med. Phys., 21, 581, 10.1118/1.597316

Fraass, 1998, American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning, Med. Phys., 25, 1773, 10.1118/1.598373

Ezzell, 2009, IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119, Med. Phys., 36, 5359, 10.1118/1.3238104

Klein, 2009, Task Group 142 report: Quality assurance of medical accelerators, Med Phys., 36, 4197, 10.1118/1.3190392

Deasy, 2003, CERR: A computational environment for radiotherapy research, Med. Phys., 30, 979, 10.1118/1.1568978

http://radium.wustl.edu/CERR/about.php

Sanchez-Nieto, 2000, BIOPLAN: Software for the biological evaluation of radiotherapy treatment plans, Med. Dosim., 25, 71, 10.1016/S0958-3947(00)00031-5

J. Uzan A. E. Nahum 2009

http://www.aapm.org/org/committees/TG166/TG166prostate.zip

http://www.aapm.org/org/committees/TG166/TG166headneck.zip

http://www.aapm.org/org/committees/TG166/TG166brain.zip

http://www.aapm.org/org/committees/TG166/EUD_Monaco_Pinnacle_Eclipse.xls

1993

Killoran, 1997, A numerical simulation of organ motion and daily setup uncertainties: Implications for radiation therapy, Int. J. Radiat. Oncol., Biol., Phys., 37, 213, 10.1016/S0360-3016(96)00477-4

Brenner, 1999, A more robust biologically based ranking criterion for treatment plans, Int. J. Radiat. Oncol., Biol., Phys., 43, 697, 10.1016/S0360-3016(98)00438-6

Das, 2010, A role for biological optimization within the current treatment planning paradigm, Med Phys., 36, 4672, 10.1118/1.3220211

Lu, 1997, Functional dose-volume histograms for functionally heterogeneous normal organs, Phys. Med. Biol., 42, 345, 10.1088/0031-9155/42/2/007

Marks, 1999, Incorporation of functional status into dose-volume analysis, Med. Phys., 26, 196, 10.1118/1.598503

http://ctep.cancer.gov

Cox, 1995, Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC), Int. J. Radiat. Oncol., Biol., Phys., 31, 1341, 10.1016/0360-3016(95)00060-C

Withers, 1988, Treatment volume and tissue tolerance, Int. J. Radiat. Oncol., Biol., Phys., 14, 751, 10.1016/0360-3016(88)90098-3

Alber, 1999, An objective function for radiation treatment optimization based on local biological measures, Phys. Med. Biol., 44, 479, 10.1088/0031-9155/44/2/014

Alber, 2000, A concept for the optimization of radiotherapy

Alber, 2006, A normal tissue dose response model of dynamic repair processes, Phys. Med. Biol., 51, 153, 10.1088/0031-9155/51/1/012

Alber, 2002, Tools for the analysis of dose optimization: II. Sensitivity analysis, Phys. Med. Biol., 47, N265, 10.1088/0031-9155/47/19/402

B. Hårdemark A. Liander H. Rehbinder J. Löf D. Robinson 3 www.medical.philips.com/main/products/ros/assets/docs/white_papers/EUD_Final.pdf

Burman, 1991, Fitting of normal tissue tolerance data to an analytic function, Int. J. Radiat. Oncol., Biol., Phys., 21, 123, 10.1016/0360-3016(91)90172-Z

Lind, 1999, Optimization of the dose level for a given treatment plan to maximize the complication-free tumor cure, Acta Oncol., 38, 787, 10.1080/028418699432950

Kåver, 1999, Stochastic optimization of intensity modulated radiotherapy to account for uncertainties in patient sensitivity, Phys. Med. Biol., 44, 2955, 10.1088/0031-9155/44/12/308

Källman, 1992, Tumour and normal tissue responses to fractionated non-uniform dose delivery, Int. J. Radiat. Biol., 62, 249, 10.1080/09553009214552071