The unusual 2014–2016 El Niño events: Dynamics, prediction and enlightenments
Tóm tắt
The 2014–2016 El Niño events consist of a stalled El Niño event in the winter of 2014/2015 and a following extreme El Niño event in the end of 2015. Neither event was successfully predicted in operational prediction models. Because of the unusual evolutions of these events that rarely happened in the historical observations, few experience was ready for understanding and predicting the two El Niño events when they occurred. Also due to their specialties, considerable attention were attracted with aims to reveal the hidden mechanisms. This article reviews the recent progresses and knowledge that were obtained in these studies. Emerging from these studies, it was argued that the key factor that was responsible for the stalled El Niño in 2014 was the unexpected summertime Easterly Wind Surges (EWSs) or the lack of summertime Westerly Wind Bursts (WWBs). Most operational prediction models failed to reproduce such stochastic winds and thus made unrealistic forecasts. The two El Niño events awakened the research community again to incorporate the state-of-the-art climate models to simulate the stochastic winds and investigate their roles in the development of El Niño.
Tài liệu tham khảo
An S I, Jin F F. 2004. Nonlinearity and asymmetry of ENSO. J Clim, 17: 2399–2412
Ashok K, Behera S K, Rao S A, Weng H, Yamagata T. 2007. El Niño Modoki and its possible teleconnection. J Geophys Res-Oceans, 112: C11007
Barnston A G, Tippett M K, L’Heureux M L, Li S H, DeWitt D G. 2012. Skill of real-time seasonal ENSO model predictions during 2002-11: is our capability increasing? Bull Amer Meteorol Soc, 93: 631–651
Berlage H. 1966. Fluctuations in the general atmospheric circulation of more than one year, their nature and prognostic value. Mededelingen en Verhandelingen, 88: 152
Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev, 97: 163–172
Blanke B, Neelin J D, Gutzler D. 1997. Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J Clim, 10: 1473–1486
Burgers G, Stephenson D B. 1999. The “normality” of El Niño. Geophys Res Lett, 26: 1027–1030
Capotondi A, Wittenberg A T, Newman M, Di Lorenzo E, Yu J Y, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin F F, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh S W. 2015. Understanding ENSO diversity. Bull Amer Meteorol Soc, 96: 921–938
Chang P, Ji L, Wang B, Li T. 1995. Interactions between the seasonal cycle and El Niño-Southern Oscillation in an intermediate coupled oceanatmosphere model. J Atmos Sci, 52: 2353–2372
Chen D K, Lian T, Fu C B, Cane M A, Tang Y M, Murtugudde R, Song X, Wu Q, Zhou L. 2015. Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci, 8: 339–345
Chiodi A M, Harrison D E. 2014. Equatorial Pacific easterly wind surges and the onset of La Niña events. J Clim, 28: 776–792
Chiodi A M, Harrison D E. 2017. Observed El Niño SSTA development and the effects of easterly and westerly wind events in 2014/15. J Clim, 30: 1505–1519
Duan W S, Liu X C, Zhu K Y, Mu M. 2009. Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J Geophys Res-Oceans, 114: C04022
Eisenman I, Yu L, Tziperman E. 2005. Westerly wind bursts: ENSO’s tail rather than the dog? J Clim, 18: 5224–5238
England M H, McGregor S, Spence P, Meehl G A, Timmermann A, Cai W, Gupta A S, McPhaden M J, Purich A, Santoso A. 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change, 4: 222–227
Fang X H, Mu M. 2018a. A three-region conceptual model for central Pacific El Niño including zonal advective feedback. J Clim, 31: 4965–4979
Fang X H, Mu M. 2018b. Both air-sea components are crucial for El Niño forecast from boreal spring. Sci Rep, 8: 10501
Fang X H, Zheng F. 2018. Simulating Eastern- and Central-Pacific Type ENSO using a simple coupled model. Adv Atmos Sci, 35: 671–681
Fang X H, Zheng F, Liu Z Y, Zhu J. 2019. Decadal modulation of ENSO spring persistence barrier by thermal damping processes in the observation. Geophys Res Lett, 46: 6892–6899
Fang X F, Zheng F, Zhu J. 2015. The cloud-radiative effect when simulating strength asymmetry in two types of El Niño events using CMIP5 models. J Geophys Res-Oceans, 120: 4357–4369
Fedorov A V, Philander S G. 2001. A stability analysis of tropical oceanatmosphere interactions: Bridging measurements and theory for El Niño. J Clim, 14: 3086–3101
Fu C B, Fletcher J. 1985. Two patterns of equatorial warming associated with El Niño. Chin Sci Bull, 30: 1360–1364
Gebbie G, Eisenman I, Wittenberg A, Tziperman E. 2007. Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J Atmos Sci, 64: 3281–3295
Harrison D E, Vecchi G A. 1997. Westerly wind events in the tropical Pacific. J Clim, 10: 3131–5373
Hayashi M, Watanabe M. 2017. ENSO complexity induced by state dependence of Westerly wind events. J Clim, 30: 3401–3420
Hu S N, Fedorov A V. 2016. Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci USA, 113: 2005–2010
Hu S N, Fedorov A V. 2019. The extreme El Niño of 2015–2016: the role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim Dyn, 52: 7339–7357
Hu Z Z, Kumar A, Ren H L, Wang H, L’Heureux M, Jin F F. 2013. Weakened interannual variability in the tropical Pacific Ocean since 2000. J Clim, 26: 2601–2613
Hua L, Sun D Z, Yu Y Q. 2018. Why do we have El Niño: Quantifying a diabatic and nonlinear perspective using observations. Clim Dyn, 52: 6705–6717
Jin E K, Kinter Iii J L, Wang B, Park C K, Kang I S, Kirtman B P, Kug J S, Kumar A, Luo J J, Schemm J, Shukla J, Yamagata T. 2008. Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn, 31: 647–664
Jin F F. 1996. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño-Southern Oscillation. Science, 274: 76–78
Jin F F. 1997a. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci, 54: 811–829
Jin F F. 1997b. An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J Atmos Sci, 54: 830–847
Jin F F, An S I, Timmermann A, Zhao J. 2003. Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett, 30: 1120
Jin F F, Neelin J D, Ghil M. 1994. El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264: 70–72
Kao H Y, Yu J Y. 2009. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim, 22: 615–632
Kessler W S. 2002. Is ENSO a cycle or a series of events? Geophys Res Lett, 29: 40–1-40-4
Kirtman B P, Pegion K, Kinter S M. 2005. Internal atmospheric dynamics and tropical Indo-Pacific climate variability. J Atmos Sci, 62: 2220–2233
Kleeman R, Moore A M. 1997. A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J Atmos Sci, 54: 753–767
Kug J S, Jin F F, An S I. 2009. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J Clim, 22: 1499–1515
Levine A F Z, McPhaden M J. 2015. The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys Res Lett, 42: 5034–5041
Levine A F Z, McPhaden M J. 2016. How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys Res Lett, 43: 6503–6510
L’Heureux M L, Takahashi K, Watkins A B, Barnston A G, Becker E J, Di Liberto T E, Gamble F, Gottschalck J, Halpert M S, Huang B, Mosquera-Vásquez K, Wittenberg A T. 2017. Observing and predicting the 2015/16 El Niño. Bull Amer Meteorol Soc, 98: 1363–1382
Lian T, Chen D. 2012. An evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. J Clim, 25: 5361–5373
Lian T, Chen D K, Tang Y M. 2017. Genesis of the 2014–2016 El Niño events. Sci China Earth Sci, 60: 1589–1600
Lian T, Chen D, Tang Y M, Wu Q. 2014. Effects of westerly wind bursts on El Niño: A new perspective. Geophys Res Lett, 41: 3522–3527
Liang J, Yang X Q, Sun D Z. 2012. The effect of ENSO events on the tropical Pacific mean climate: Insights from an analytical model. J Clim, 25: 7590–7606
Liang J, Yang X Q, Sun D Z. 2017. Factors determining the asymmetry of ENSO. J Clim, 30: 6097–6106
Lopez H, Kirtman B P. 2014. WWBs, ENSO predictability, the spring barrier and extreme events. J Geophys Res-Atmos, 119: 10114–10138
McPhaden M J. 1999. Genesis and Evolution of the 1997–98 El Niño. Science, 283: 950–954
McPhaden M J. 2015. Playing hide and seek with El Niño. Nat Clim Change, 5: 791–795
Meinen C S. 2005. Meridional extent and interannual variability of the Pacific ocean tropical-subtropical warm water exchange. J Phys Oceanogr, 35: 323–335
Meinen C S, McPhaden M J. 2000. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim, 13: 3551–3559
Menkes C E, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G. 2014. About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys Res Lett, 41: 6476–6483
Min Q Y, Su J Z, Zhang R H, Rong X Y. 2015. What hindered the El Niño pattern in 2014? Geophys Res Lett, 42: 6762–6770
Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlin Processes Geophys, 10: 493–501
Mu M, Duan W, Wang B. 2007a. Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J Geophys Res, 112: D10113
Mu M, Ren H L. 2017. Enlightenments from researches and predictions of 2014–2016 super El Niño event. Sci China Earth Sci, 60: 1569–1571
Mu M, Xu H, Duan W S. 2007b. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys Res Lett, 34: L03709
Neelin J D, Battisti D S, Hirst A C, Jin F F, Wakata Y, Yamagata T, Zebiak S E. 1998. ENSO theory. J Geophys Res-Oceans, 103: 14261–14290
Penland C, Sardeshmukh P D. 1995. The optimal growth of tropical sea surface temperature anomalies. J Clim, 8: 1999–2024
Philander S G, Fedorov A. 2003. Is El Niño sporadic or cyclic? Annu Rev Earth Planet Sci, 31: 579–594
Picaut J, Masia F, du P Y. 1997. An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277: 663–666
Puy M, Vialard J, Lengaigne M, Guilyardi E. 2016. Modulation of equatorial Pacific westerly/easterly wind events by the Madden-Julian oscillation and convectively-coupled Rossby waves. Clim Dyn, 46: 2155–2178
Puy M, Vialard J, Lengaigne M, Guilyardi E, DiNezio P N, Voldoire A, Balmaseda M, Madec G, Menkes C, Mcphaden M J. 2019. Influence of westerly wind events stochasticity on El Niño amplitude: The case of 2014 vs. 2015. Clim Dyn, 52: 7435–7454
Qi Q Q, Duan W S, Zheng F, Tang Y M. 2017. On the “spring predictability barrier” for strong El Niño events as derived from an intermediate coupled model ensemble prediction system. Sci China Earth Sci, 60: 1614–1631
Ren H L, Jin F F, Tian B, Scaife A A. 2016. Distinct persistence barriers in two types of ENSO. Geophys Res Lett, 43: 10973–10979
Ren H L, Sun C H, Ren F M, Yuan Y, Lu B, Tian B, Zuo J Q, Liu Y, Cao L, Han R Q, Jia X L, Liu C Z. 2017. Identification method of El Niño/La Niña events. The People’s Republic China’s National Standard GB/T 33666-2017, May 2017. Beijing: Standard Press of China. 1–6
Rasmusson E M, Carpenter T H. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/ El Niño. Mon Weather Rev, 110: 354–384
Santoso A, Cai W, Collins M, McPhaden M J, Jin F F, Guilyardi E, Vecchi G, Dommenget D, Wang G. 2015. ENSO extremes and diversity: Dynamics, teleconnections, and impacts. Bull Amer Meteorol Soc, 96: 1969–1972
Santoso A, Mcphaden M J, Cai W. 2017. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev Geophys, 55: 1079–1129
Schopf P S, Suarez M J. 1988. Vacillations in a coupled ocean-atmosphere model. J Atmos Sci, 45: 549–566
Stein K, Schneider N, Timmermann A, Jin F F. 2010. Seasonal synchronization of ENSO events in a linear stochastic model. J Clim, 23: 5629–5643
Stuecker M F, Timmermann A, Jin F F, McGregor S, Ren H L. 2013. A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nature Geosci, 6: 540–544
Suarez M J, Schopf P S. 1988. A delayed action oscillator for ENSO. J Atmos Sci, 45: 3283–3287
Sun Y, Wang F, Sun D Z. 2016. Weak ENSO asymmetry due to weak nonlinear air-sea interaction in CMIP5 climate models. Adv Atmos Sci, 33: 352–364
Thual S, Majda A J, Chen N. 2019. Statistical occurrence and mechanisms of the 2014–2016 delayed super El Niño captured by a simple dynamical model. Clim Dyn, 52: 2351–2366
Timmermann A, An S I, Kug J S, Jin F F, Cai W, Capotondi A, Cobb K M, Lengaigne M, McPhaden M J, Stuecker M F, Stein K, Wittenberg A T, Yun K S, Bayr T, Chen H C, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham Y G, Hayashi M, Ineson S, Kang D, Kim S, Kim W M, Lee J Y, Li T, Luo J J, McGregor S, Planton Y, Power S, Rashid H, Ren H L, Santoso A, Takahashi K, Todd A, Wang G, Wang G, Xie R, Yang W H, Yeh S W, Yoon J, Zeller E, Zhang X. 2018. El Niño-Southern Oscillation complexity. Nature, 559: 535–545
Vecchi G A, Harrison D E. 2000. Tropical Pacific Sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J Clim, 13: 1814–1830
Vecchi G A, Wittenberg A T, Rosati A. 2006. Reassessing the role of stochastic forcing in the 1997–1998 El Niño. Geophys Res Lett, 33
Walker G T. 1924. Correlations in seasonal variations of weather. I. A further study of world weather. Mem Indian Meteorol Dep, 24: 275–332
Wang C. 2018. A review of ENSO theories. Natl Sci Rev, 5: 813–825
Webster P J, Yang S. 1992. Monsoon and ENSO: Selectively interactive systems. Q J R Met Soc, 118: 877–926
Weisberg R H, Wang C. 1997. A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett, 24: 779–782
Wyrtki K. 1975. El Niño—The dynamic response of the equatorial Pacific ocean to atmospheric forcing. J Phys Oceanogr, 5: 572–584
Wyrtki K. 1985. Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res-Oceans, 90: 7129–7132
Xie R, Jin F F. 2018. Two leading ENSO modes and El Niño types in the Zebiak-Cane model. J Clim, 31: 1943–1962
Xue Y, Cane M A, Zebiak S E. 1997a. Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon Weather Rev, 125: 2043–2056
Xue Y, Cane M A, Zebiak S E, Palmer T N. 1997b. Predictability of a coupled model of ENSO using singular vector analysis. Part II: Optimal growth and forecast skill. Mon Weather Rev, 125: 2057–2073
Xue Y, Kumar A. 2017. Evolution of the 2015/16 El Niño and historical perspective since 1979. Sci China Earth Sci, 60: 1572–1588
Yu Y S, Mu M, Duan W S. 2012. Does model parameter error cause a significant “Spring Predictability Barrier” for El Niño events in the Zebiak-Cane model? J Clim, 25: 1263–1277
Zhang R H, Gao C. 2017. Processes involved in the second-year warming of the 2015 El Niño event as derived from an intermediate ocean model. Sci China Earth Sci, 60: 1601–1613
Zhang T, Sun D Z. 2014. ENSO asymmetry in CMIP5 models. J Clim, 27: 4070–4093
Zheng F, Fang X H, Yu J Y, Zhu J. 2014. Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys Res Lett, 41: 7651–7657
Zheng F, Fang X H, Zhu J, Yu J Y, Li X C. 2016. Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys Res Lett, 43: 12560–12568