The unusual 2014–2016 El Niño events: Dynamics, prediction and enlightenments

Science China Earth Sciences - Tập 63 - Trang 626-633 - 2019
Ruihuang Xie1,2, Xianghui Fang3,4
1CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
2Laboratory for Ocean and Climate Dynamics, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
3Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai, China
4Innovation Center of Ocean and Atmosphere System, Zhuhai Fudan Innovation Research Institute, Zhuhai, China

Tóm tắt

The 2014–2016 El Niño events consist of a stalled El Niño event in the winter of 2014/2015 and a following extreme El Niño event in the end of 2015. Neither event was successfully predicted in operational prediction models. Because of the unusual evolutions of these events that rarely happened in the historical observations, few experience was ready for understanding and predicting the two El Niño events when they occurred. Also due to their specialties, considerable attention were attracted with aims to reveal the hidden mechanisms. This article reviews the recent progresses and knowledge that were obtained in these studies. Emerging from these studies, it was argued that the key factor that was responsible for the stalled El Niño in 2014 was the unexpected summertime Easterly Wind Surges (EWSs) or the lack of summertime Westerly Wind Bursts (WWBs). Most operational prediction models failed to reproduce such stochastic winds and thus made unrealistic forecasts. The two El Niño events awakened the research community again to incorporate the state-of-the-art climate models to simulate the stochastic winds and investigate their roles in the development of El Niño.

Tài liệu tham khảo

An S I, Jin F F. 2004. Nonlinearity and asymmetry of ENSO. J Clim, 17: 2399–2412 Ashok K, Behera S K, Rao S A, Weng H, Yamagata T. 2007. El Niño Modoki and its possible teleconnection. J Geophys Res-Oceans, 112: C11007 Barnston A G, Tippett M K, L’Heureux M L, Li S H, DeWitt D G. 2012. Skill of real-time seasonal ENSO model predictions during 2002-11: is our capability increasing? Bull Amer Meteorol Soc, 93: 631–651 Berlage H. 1966. Fluctuations in the general atmospheric circulation of more than one year, their nature and prognostic value. Mededelingen en Verhandelingen, 88: 152 Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev, 97: 163–172 Blanke B, Neelin J D, Gutzler D. 1997. Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J Clim, 10: 1473–1486 Burgers G, Stephenson D B. 1999. The “normality” of El Niño. Geophys Res Lett, 26: 1027–1030 Capotondi A, Wittenberg A T, Newman M, Di Lorenzo E, Yu J Y, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin F F, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh S W. 2015. Understanding ENSO diversity. Bull Amer Meteorol Soc, 96: 921–938 Chang P, Ji L, Wang B, Li T. 1995. Interactions between the seasonal cycle and El Niño-Southern Oscillation in an intermediate coupled oceanatmosphere model. J Atmos Sci, 52: 2353–2372 Chen D K, Lian T, Fu C B, Cane M A, Tang Y M, Murtugudde R, Song X, Wu Q, Zhou L. 2015. Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci, 8: 339–345 Chiodi A M, Harrison D E. 2014. Equatorial Pacific easterly wind surges and the onset of La Niña events. J Clim, 28: 776–792 Chiodi A M, Harrison D E. 2017. Observed El Niño SSTA development and the effects of easterly and westerly wind events in 2014/15. J Clim, 30: 1505–1519 Duan W S, Liu X C, Zhu K Y, Mu M. 2009. Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J Geophys Res-Oceans, 114: C04022 Eisenman I, Yu L, Tziperman E. 2005. Westerly wind bursts: ENSO’s tail rather than the dog? J Clim, 18: 5224–5238 England M H, McGregor S, Spence P, Meehl G A, Timmermann A, Cai W, Gupta A S, McPhaden M J, Purich A, Santoso A. 2014. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change, 4: 222–227 Fang X H, Mu M. 2018a. A three-region conceptual model for central Pacific El Niño including zonal advective feedback. J Clim, 31: 4965–4979 Fang X H, Mu M. 2018b. Both air-sea components are crucial for El Niño forecast from boreal spring. Sci Rep, 8: 10501 Fang X H, Zheng F. 2018. Simulating Eastern- and Central-Pacific Type ENSO using a simple coupled model. Adv Atmos Sci, 35: 671–681 Fang X H, Zheng F, Liu Z Y, Zhu J. 2019. Decadal modulation of ENSO spring persistence barrier by thermal damping processes in the observation. Geophys Res Lett, 46: 6892–6899 Fang X F, Zheng F, Zhu J. 2015. The cloud-radiative effect when simulating strength asymmetry in two types of El Niño events using CMIP5 models. J Geophys Res-Oceans, 120: 4357–4369 Fedorov A V, Philander S G. 2001. A stability analysis of tropical oceanatmosphere interactions: Bridging measurements and theory for El Niño. J Clim, 14: 3086–3101 Fu C B, Fletcher J. 1985. Two patterns of equatorial warming associated with El Niño. Chin Sci Bull, 30: 1360–1364 Gebbie G, Eisenman I, Wittenberg A, Tziperman E. 2007. Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J Atmos Sci, 64: 3281–3295 Harrison D E, Vecchi G A. 1997. Westerly wind events in the tropical Pacific. J Clim, 10: 3131–5373 Hayashi M, Watanabe M. 2017. ENSO complexity induced by state dependence of Westerly wind events. J Clim, 30: 3401–3420 Hu S N, Fedorov A V. 2016. Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci USA, 113: 2005–2010 Hu S N, Fedorov A V. 2019. The extreme El Niño of 2015–2016: the role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim Dyn, 52: 7339–7357 Hu Z Z, Kumar A, Ren H L, Wang H, L’Heureux M, Jin F F. 2013. Weakened interannual variability in the tropical Pacific Ocean since 2000. J Clim, 26: 2601–2613 Hua L, Sun D Z, Yu Y Q. 2018. Why do we have El Niño: Quantifying a diabatic and nonlinear perspective using observations. Clim Dyn, 52: 6705–6717 Jin E K, Kinter Iii J L, Wang B, Park C K, Kang I S, Kirtman B P, Kug J S, Kumar A, Luo J J, Schemm J, Shukla J, Yamagata T. 2008. Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn, 31: 647–664 Jin F F. 1996. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño-Southern Oscillation. Science, 274: 76–78 Jin F F. 1997a. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci, 54: 811–829 Jin F F. 1997b. An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J Atmos Sci, 54: 830–847 Jin F F, An S I, Timmermann A, Zhao J. 2003. Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett, 30: 1120 Jin F F, Neelin J D, Ghil M. 1994. El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264: 70–72 Kao H Y, Yu J Y. 2009. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim, 22: 615–632 Kessler W S. 2002. Is ENSO a cycle or a series of events? Geophys Res Lett, 29: 40–1-40-4 Kirtman B P, Pegion K, Kinter S M. 2005. Internal atmospheric dynamics and tropical Indo-Pacific climate variability. J Atmos Sci, 62: 2220–2233 Kleeman R, Moore A M. 1997. A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J Atmos Sci, 54: 753–767 Kug J S, Jin F F, An S I. 2009. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J Clim, 22: 1499–1515 Levine A F Z, McPhaden M J. 2015. The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys Res Lett, 42: 5034–5041 Levine A F Z, McPhaden M J. 2016. How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys Res Lett, 43: 6503–6510 L’Heureux M L, Takahashi K, Watkins A B, Barnston A G, Becker E J, Di Liberto T E, Gamble F, Gottschalck J, Halpert M S, Huang B, Mosquera-Vásquez K, Wittenberg A T. 2017. Observing and predicting the 2015/16 El Niño. Bull Amer Meteorol Soc, 98: 1363–1382 Lian T, Chen D. 2012. An evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. J Clim, 25: 5361–5373 Lian T, Chen D K, Tang Y M. 2017. Genesis of the 2014–2016 El Niño events. Sci China Earth Sci, 60: 1589–1600 Lian T, Chen D, Tang Y M, Wu Q. 2014. Effects of westerly wind bursts on El Niño: A new perspective. Geophys Res Lett, 41: 3522–3527 Liang J, Yang X Q, Sun D Z. 2012. The effect of ENSO events on the tropical Pacific mean climate: Insights from an analytical model. J Clim, 25: 7590–7606 Liang J, Yang X Q, Sun D Z. 2017. Factors determining the asymmetry of ENSO. J Clim, 30: 6097–6106 Lopez H, Kirtman B P. 2014. WWBs, ENSO predictability, the spring barrier and extreme events. J Geophys Res-Atmos, 119: 10114–10138 McPhaden M J. 1999. Genesis and Evolution of the 1997–98 El Niño. Science, 283: 950–954 McPhaden M J. 2015. Playing hide and seek with El Niño. Nat Clim Change, 5: 791–795 Meinen C S. 2005. Meridional extent and interannual variability of the Pacific ocean tropical-subtropical warm water exchange. J Phys Oceanogr, 35: 323–335 Meinen C S, McPhaden M J. 2000. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim, 13: 3551–3559 Menkes C E, Lengaigne M, Vialard J, Puy M, Marchesiello P, Cravatte S, Cambon G. 2014. About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys Res Lett, 41: 6476–6483 Min Q Y, Su J Z, Zhang R H, Rong X Y. 2015. What hindered the El Niño pattern in 2014? Geophys Res Lett, 42: 6762–6770 Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlin Processes Geophys, 10: 493–501 Mu M, Duan W, Wang B. 2007a. Season-dependent dynamics of nonlinear optimal error growth and El Niño-Southern Oscillation predictability in a theoretical model. J Geophys Res, 112: D10113 Mu M, Ren H L. 2017. Enlightenments from researches and predictions of 2014–2016 super El Niño event. Sci China Earth Sci, 60: 1569–1571 Mu M, Xu H, Duan W S. 2007b. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys Res Lett, 34: L03709 Neelin J D, Battisti D S, Hirst A C, Jin F F, Wakata Y, Yamagata T, Zebiak S E. 1998. ENSO theory. J Geophys Res-Oceans, 103: 14261–14290 Penland C, Sardeshmukh P D. 1995. The optimal growth of tropical sea surface temperature anomalies. J Clim, 8: 1999–2024 Philander S G, Fedorov A. 2003. Is El Niño sporadic or cyclic? Annu Rev Earth Planet Sci, 31: 579–594 Picaut J, Masia F, du P Y. 1997. An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277: 663–666 Puy M, Vialard J, Lengaigne M, Guilyardi E. 2016. Modulation of equatorial Pacific westerly/easterly wind events by the Madden-Julian oscillation and convectively-coupled Rossby waves. Clim Dyn, 46: 2155–2178 Puy M, Vialard J, Lengaigne M, Guilyardi E, DiNezio P N, Voldoire A, Balmaseda M, Madec G, Menkes C, Mcphaden M J. 2019. Influence of westerly wind events stochasticity on El Niño amplitude: The case of 2014 vs. 2015. Clim Dyn, 52: 7435–7454 Qi Q Q, Duan W S, Zheng F, Tang Y M. 2017. On the “spring predictability barrier” for strong El Niño events as derived from an intermediate coupled model ensemble prediction system. Sci China Earth Sci, 60: 1614–1631 Ren H L, Jin F F, Tian B, Scaife A A. 2016. Distinct persistence barriers in two types of ENSO. Geophys Res Lett, 43: 10973–10979 Ren H L, Sun C H, Ren F M, Yuan Y, Lu B, Tian B, Zuo J Q, Liu Y, Cao L, Han R Q, Jia X L, Liu C Z. 2017. Identification method of El Niño/La Niña events. The People’s Republic China’s National Standard GB/T 33666-2017, May 2017. Beijing: Standard Press of China. 1–6 Rasmusson E M, Carpenter T H. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/ El Niño. Mon Weather Rev, 110: 354–384 Santoso A, Cai W, Collins M, McPhaden M J, Jin F F, Guilyardi E, Vecchi G, Dommenget D, Wang G. 2015. ENSO extremes and diversity: Dynamics, teleconnections, and impacts. Bull Amer Meteorol Soc, 96: 1969–1972 Santoso A, Mcphaden M J, Cai W. 2017. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev Geophys, 55: 1079–1129 Schopf P S, Suarez M J. 1988. Vacillations in a coupled ocean-atmosphere model. J Atmos Sci, 45: 549–566 Stein K, Schneider N, Timmermann A, Jin F F. 2010. Seasonal synchronization of ENSO events in a linear stochastic model. J Clim, 23: 5629–5643 Stuecker M F, Timmermann A, Jin F F, McGregor S, Ren H L. 2013. A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nature Geosci, 6: 540–544 Suarez M J, Schopf P S. 1988. A delayed action oscillator for ENSO. J Atmos Sci, 45: 3283–3287 Sun Y, Wang F, Sun D Z. 2016. Weak ENSO asymmetry due to weak nonlinear air-sea interaction in CMIP5 climate models. Adv Atmos Sci, 33: 352–364 Thual S, Majda A J, Chen N. 2019. Statistical occurrence and mechanisms of the 2014–2016 delayed super El Niño captured by a simple dynamical model. Clim Dyn, 52: 2351–2366 Timmermann A, An S I, Kug J S, Jin F F, Cai W, Capotondi A, Cobb K M, Lengaigne M, McPhaden M J, Stuecker M F, Stein K, Wittenberg A T, Yun K S, Bayr T, Chen H C, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham Y G, Hayashi M, Ineson S, Kang D, Kim S, Kim W M, Lee J Y, Li T, Luo J J, McGregor S, Planton Y, Power S, Rashid H, Ren H L, Santoso A, Takahashi K, Todd A, Wang G, Wang G, Xie R, Yang W H, Yeh S W, Yoon J, Zeller E, Zhang X. 2018. El Niño-Southern Oscillation complexity. Nature, 559: 535–545 Vecchi G A, Harrison D E. 2000. Tropical Pacific Sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J Clim, 13: 1814–1830 Vecchi G A, Wittenberg A T, Rosati A. 2006. Reassessing the role of stochastic forcing in the 1997–1998 El Niño. Geophys Res Lett, 33 Walker G T. 1924. Correlations in seasonal variations of weather. I. A further study of world weather. Mem Indian Meteorol Dep, 24: 275–332 Wang C. 2018. A review of ENSO theories. Natl Sci Rev, 5: 813–825 Webster P J, Yang S. 1992. Monsoon and ENSO: Selectively interactive systems. Q J R Met Soc, 118: 877–926 Weisberg R H, Wang C. 1997. A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett, 24: 779–782 Wyrtki K. 1975. El Niño—The dynamic response of the equatorial Pacific ocean to atmospheric forcing. J Phys Oceanogr, 5: 572–584 Wyrtki K. 1985. Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res-Oceans, 90: 7129–7132 Xie R, Jin F F. 2018. Two leading ENSO modes and El Niño types in the Zebiak-Cane model. J Clim, 31: 1943–1962 Xue Y, Cane M A, Zebiak S E. 1997a. Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon Weather Rev, 125: 2043–2056 Xue Y, Cane M A, Zebiak S E, Palmer T N. 1997b. Predictability of a coupled model of ENSO using singular vector analysis. Part II: Optimal growth and forecast skill. Mon Weather Rev, 125: 2057–2073 Xue Y, Kumar A. 2017. Evolution of the 2015/16 El Niño and historical perspective since 1979. Sci China Earth Sci, 60: 1572–1588 Yu Y S, Mu M, Duan W S. 2012. Does model parameter error cause a significant “Spring Predictability Barrier” for El Niño events in the Zebiak-Cane model? J Clim, 25: 1263–1277 Zhang R H, Gao C. 2017. Processes involved in the second-year warming of the 2015 El Niño event as derived from an intermediate ocean model. Sci China Earth Sci, 60: 1601–1613 Zhang T, Sun D Z. 2014. ENSO asymmetry in CMIP5 models. J Clim, 27: 4070–4093 Zheng F, Fang X H, Yu J Y, Zhu J. 2014. Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys Res Lett, 41: 7651–7657 Zheng F, Fang X H, Zhu J, Yu J Y, Li X C. 2016. Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys Res Lett, 43: 12560–12568