The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H C Yang
Tóm tắt
Từ khóa
Tài liệu tham khảo
Allegretto W, Lower bounds on the number of points in the lower spectrum of elliptic operators,Can. J. Math. 31 (1979) 419–426
Anghel N, Extrinsic upper bounds for eigenvalues of Dirac-type operators,Proc. Am. Math. Soc. 117 (1993) 501–509
Ashbaugh M S and Benguria R D, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions,Ann. Math. 135 (1992) 601–628
Ashbaugh M S and Benguria R D, More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions,SIAM J. Math. Anal. 24 (1993) 1622–1651
Ashbaugh M S and Benguria R D, Isoperimetric inequalities for eigenvalue ratios, Partial Differential Equations of Elliptic Type, Cortona, 1992,Symposia Mathematica, vol. 35 (eds) A Alvino, E Fabes and G Talenti (Cambridge: Cambridge University Press) (1994) pp. 1–36.
Ashbaugh M S and Benguria R D, Bounds for ratios of the first, second, and third membrane eigenvalues, Nonlinear Problems in Applied Mathematics: in Honor of Ivar Stakgold on his Seventieth Birthday (eds) T S Angell, L Pamela Cook, R E Kleinman and W E Olmstead (Philadelphia: Society for Industrial and Applied Mathematics) (1996) pp. 30–42
Ashbaugh M S and Benguria R D, A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S n ,Trans. Am. Math. Soc. 353 (2001) 1055–1087
Ashbaugh M S and Hermi L, On extending the inequalities of Payne, Pólya, and Weinberger using spherical harmonics (2000) preprint
Brands J J A M, Bounds for the ratios of the first three membrane eigenvalues,Arch. Rational Mech. Anal. 16 (1964) 265–268
Chavel I, Eigenvalues in Riemannian Geometry (New York: Academic Press) (1984)
Chen Z-C, Inequalities for eigenvalues of polyharmonic operator Δ6,Kexue Tongbao (English Ed.) 30 (1985) 869–876
Cheng S-Y, Eigenfunctions and eigenvalues of Laplacian,Proc. Symp. Pure Math., vol. 27, part 2, Differential Geometry (eds) S S Chern and R Osserman (Providence, Rhode Island: Am. Math. Soc.) (1975) pp. 185–193
Chiti G, A bound for the ratio of the first two eigenvalues of a membrane,SIAM J. Math. Anal. 14 (1983) 1163–1167
Harrell E M and Michel P L, Commutator bounds for eigenvalues, with applications to spectral geometry,Commun. Part. Differ. Equ. 19 (1994) 2037–2055
Harrell E M and Michel P L, Commutator bounds for eigenvalues of some differential operators, Evolution Equations, Lecture Notes in Pure and Applied Mathematics, vol. 168 (eds) G Ferreyra, G R Goldstein and F Neubrander (New York: Marcel Dekker) (1995) pp. 235–244
Harrell E M and Stubbe J, On trace identities and universal eigenvalue estimates for some partial differential operators,Trans. Am. Math. Soc. 349 (1997) 1797–1809
Hile G N and Protter M H, Inequalities for eigenvalues of the Laplacian,Indiana Univ. Math. J. 29 (1980) 523–538
Hile G N and Yeh R Z, Inequalities for eigenvalues of the biharmonic operator,Pac. J. Math. 112 (1984) 115–133
Hook GN, Domain-independent upper bounds for eigenvalues of elliptic operators,Trans. Am. Math. Soc. 318 (1990) 615–642
Lee J M, The gaps in the spectrum of the Laplace—Beltrami operator,Houston J. Math. 17 (1991) 1–24
Leung P-F, On the consecutive eigenvalues of the Laplacian of a compact minimal submanifold in a sphere,J. Austral. Math. Soc. (Series A) 50 (1991) 409–416
Lorch L, Some inequalities for the first positive zeros of Bessel functions,SIAM J. Math. Anal. 24 (1993) 814–823
Maeda M, On the eigenvalues of Laplacian,Sci. Rep. Yokohama Nat. Univ. Sect. I 24 (1977) 29–33
Payne L E, Pólya G and Weinberger H F, Sur le quotient de deux fréquences propres consécutives,Comptes Rendus Acad. Sci Paris 241 (1955) 917–919
Payne L E, Pólya G and Weinberger H F, On the ratio of consecutive eigenvalues,J. Math. Phys. 35 (1956) 289–298
Protter M H, Universal inequalities for eigenvalues, Maximum Principles and Eigenvalue Problems in Partial Differential Equations,Pitman Research Notes in Mathematics Series vol. 175 (ed) P W Schaefer (Harlow, Essex, United Kingdom: Longman Scientific and Technical) (1988) pp. 111–120
Protter M H, Upper bounds for eigenvalues of elliptic operators, Partial Differential Equations and Applications, Collected Papers in Honor of Carlo Pucci,Lecture Notes in Pure and Applied Mathematics, vol. 177 (eds) P Marcellini, G Talenti and E Vesentini (New York: Marcel Dekker) (1996) pp. 271–277
Qian C-L and Chen Z-C, Estimates of eigenvalues for uniformly elliptic operator of second order,Acta Math. Appl. Sinica (English Ser.) 10 (1994) 349–355
Thompson C J, On the ratio of consecutive eigenvalues in n-dimensions,Stud, Appl. Math. 48 (1969) 281–283
Yang H C, Estimates of the difference between consecutive eigenvalues (1995) preprint (revision of International Centre for Theoretical Physics preprint IC/91/60, Trieste, Italy, April 1991)
Yang P C and Yau S-T, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980) 55–63
Yu Q-H, On the first and second eigenvalues of Schrödinger operator,Chinese Ann. Math. (Ser. B) 14 (1993) 85–92