The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H C Yang

Mark S. Ashbaugh1
1Department of Mathematics, University of Missouri, Columbia, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allegretto W, Lower bounds on the number of points in the lower spectrum of elliptic operators,Can. J. Math. 31 (1979) 419–426

Anghel N, Extrinsic upper bounds for eigenvalues of Dirac-type operators,Proc. Am. Math. Soc. 117 (1993) 501–509

Ashbaugh M S and Benguria R D, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions,Ann. Math. 135 (1992) 601–628

Ashbaugh M S and Benguria R D, More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions,SIAM J. Math. Anal. 24 (1993) 1622–1651

Ashbaugh M S and Benguria R D, Isoperimetric inequalities for eigenvalue ratios, Partial Differential Equations of Elliptic Type, Cortona, 1992,Symposia Mathematica, vol. 35 (eds) A Alvino, E Fabes and G Talenti (Cambridge: Cambridge University Press) (1994) pp. 1–36.

Ashbaugh M S and Benguria R D, Bounds for ratios of the first, second, and third membrane eigenvalues, Nonlinear Problems in Applied Mathematics: in Honor of Ivar Stakgold on his Seventieth Birthday (eds) T S Angell, L Pamela Cook, R E Kleinman and W E Olmstead (Philadelphia: Society for Industrial and Applied Mathematics) (1996) pp. 30–42

Ashbaugh M S and Benguria R D, A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of S n ,Trans. Am. Math. Soc. 353 (2001) 1055–1087

Ashbaugh M S and Hermi L, On extending the inequalities of Payne, Pólya, and Weinberger using spherical harmonics (2000) preprint

Brands J J A M, Bounds for the ratios of the first three membrane eigenvalues,Arch. Rational Mech. Anal. 16 (1964) 265–268

Chavel I, Eigenvalues in Riemannian Geometry (New York: Academic Press) (1984)

Chen Z-C, Inequalities for eigenvalues of polyharmonic operator Δ6,Kexue Tongbao (English Ed.) 30 (1985) 869–876

Cheng S-Y, Eigenfunctions and eigenvalues of Laplacian,Proc. Symp. Pure Math., vol. 27, part 2, Differential Geometry (eds) S S Chern and R Osserman (Providence, Rhode Island: Am. Math. Soc.) (1975) pp. 185–193

Chiti G, A bound for the ratio of the first two eigenvalues of a membrane,SIAM J. Math. Anal. 14 (1983) 1163–1167

Harrell E M, Some geometric bounds on eigenvalue gaps,Commun. Part. Differ. Equ. 18 (1993) 179–198

Harrell E M and Michel P L, Commutator bounds for eigenvalues, with applications to spectral geometry,Commun. Part. Differ. Equ. 19 (1994) 2037–2055

Harrell E M and Michel P L, Commutator bounds for eigenvalues of some differential operators, Evolution Equations, Lecture Notes in Pure and Applied Mathematics, vol. 168 (eds) G Ferreyra, G R Goldstein and F Neubrander (New York: Marcel Dekker) (1995) pp. 235–244

Harrell E M and Stubbe J, On trace identities and universal eigenvalue estimates for some partial differential operators,Trans. Am. Math. Soc. 349 (1997) 1797–1809

Hile G N and Protter M H, Inequalities for eigenvalues of the Laplacian,Indiana Univ. Math. J. 29 (1980) 523–538

Hile G N and Yeh R Z, Inequalities for eigenvalues of the biharmonic operator,Pac. J. Math. 112 (1984) 115–133

Hook GN, Domain-independent upper bounds for eigenvalues of elliptic operators,Trans. Am. Math. Soc. 318 (1990) 615–642

Lee J M, The gaps in the spectrum of the Laplace—Beltrami operator,Houston J. Math. 17 (1991) 1–24

Leung P-F, On the consecutive eigenvalues of the Laplacian of a compact minimal submanifold in a sphere,J. Austral. Math. Soc. (Series A) 50 (1991) 409–416

Li P, Eigenvalue estimates on homogeneous manifolds,Comment. Math. Helvetia 55 (1980) 347–363

Lorch L, Some inequalities for the first positive zeros of Bessel functions,SIAM J. Math. Anal. 24 (1993) 814–823

Maeda M, On the eigenvalues of Laplacian,Sci. Rep. Yokohama Nat. Univ. Sect. I 24 (1977) 29–33

Payne L E, Pólya G and Weinberger H F, Sur le quotient de deux fréquences propres consécutives,Comptes Rendus Acad. Sci Paris 241 (1955) 917–919

Payne L E, Pólya G and Weinberger H F, On the ratio of consecutive eigenvalues,J. Math. Phys. 35 (1956) 289–298

Protter M H, Can one hear the shape of a drum? Revisited,SIAM Rev. 29 (1987) 185–197

Protter M H, Universal inequalities for eigenvalues, Maximum Principles and Eigenvalue Problems in Partial Differential Equations,Pitman Research Notes in Mathematics Series vol. 175 (ed) P W Schaefer (Harlow, Essex, United Kingdom: Longman Scientific and Technical) (1988) pp. 111–120

Protter M H, Upper bounds for eigenvalues of elliptic operators, Partial Differential Equations and Applications, Collected Papers in Honor of Carlo Pucci,Lecture Notes in Pure and Applied Mathematics, vol. 177 (eds) P Marcellini, G Talenti and E Vesentini (New York: Marcel Dekker) (1996) pp. 271–277

Qian C-L and Chen Z-C, Estimates of eigenvalues for uniformly elliptic operator of second order,Acta Math. Appl. Sinica (English Ser.) 10 (1994) 349–355

Thompson C J, On the ratio of consecutive eigenvalues in n-dimensions,Stud, Appl. Math. 48 (1969) 281–283

Yang H C, Estimates of the difference between consecutive eigenvalues (1995) preprint (revision of International Centre for Theoretical Physics preprint IC/91/60, Trieste, Italy, April 1991)

Yang P C and Yau S-T, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980) 55–63

Yu Q-H, On the first and second eigenvalues of Schrödinger operator,Chinese Ann. Math. (Ser. B) 14 (1993) 85–92