The twin prime conjecture
Tóm tắt
Từ khóa
Tài liệu tham khảo
R.C. Baker and T. Freiberg, Limit points and long gaps between primes, Q. J. Math., 67 (2016), 233–260.
R.C. Baker and P. Pollack, Bounded gaps between primes with a given primitive root. II, Forum Math., 28 (2016), 675–687.
R.C. Baker and L. Zhao, Gaps between primes in Beatty sequences, Acta Arith., 172 (2016), 207–242.
R.C. Baker and L. Zhao, Gaps of smallest possible order between primes in an arithmetic progression, Int. Math. Res. Not. IMRN, 2016 (2016), 7341–7368.
W.D. Banks, T. Freiberg and J. Maynard, On limit points of the sequence of normalized prime gaps, Proc. Lond. Math. Soc. (3), 113 (2016), 515–539.
W.D. Banks, T. Freiberg and C.L. Turnage-Butterbaugh, Consecutive primes in tuples}, Acta Arith., 167 (2015), 261–266.
E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. Ser. A, 293 (1966), 1–18.
E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math., 156 (1986), 203–251.
E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli. II, Math. Ann., 277 (1987), 361–393.
E. Bombieri, J.B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli. III, J. Amer. Math. Soc., 2 (1989), 215–224.
A. Castillo, C. Hall, R.J. Lemke Oliver, P. Pollack and L. Thompson, Bounded gaps between primes in number fields and function fields, Proc. Amer. Math. Soc., 143 (2015), 2841–2856.
J.R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica, 16 (1973), 157–176.
J.R. Chen, On the Goldbach's problem and the sieve methods, Sci. Sinica, 21 (1978), 701–739.
S. Chowla, The Riemann Hypothesis and Hilbert's Tenth Problem, Mathematics and Its Applications. Vol. 4, Gordon and Breach Science Publishers, New York-London-Paris, 1965.
L. Chua, S. Park and G.D. Smith, Bounded gaps between primes in special sequences, Proc. Amer. Math. Soc., 143 (2015), 4597–4611.
A. de Polignac, Recherches nouvelles sur les nombres premiers, C. R. Acad. Sci. Paris Math., 29 (1849), 397–401.
P.D.T.A. Elliott and H. Halberstam, A conjecture in prime number theory, In: 1970 Symposia Mathematica. Vol. IV, INDAM, Rome, 1968/69, Academic Press, London, 1970, pp. 59–72.
K. Ford, B. Green, S. Konyagin, J. Maynard and T. Tao, Long gaps between primes, J. Amer. Math. Soc., 31 (2018), 65–105.
K. Ford, B. Green, S. Konyagin and T. Tao, Large gaps between consecutive prime numbers, Ann. of Math. (2), 183 (2016), 935–974.
É. Fouvry and F. Grupp, J. Reine Angew. Math., 370 (1986), 101–126.
É. Fouvry and H. Iwaniec, On a theorem of Bombieri–Vinogradov type, Mathematika, 27 (1980), 135–152.
N. Frantzikinakis, An averaged Chowla and Elliott conjecture along independent polynomials, Int. Math. Res. Not. IMRN, 2018 (2018), 3721–3743.
N. Frantzikinakis and B. Host, The logarithmic Sarnak conjecture for ergodic weights, Ann. of Math. (2), 187 (2018), 869–931.
D.A. Goldston, J. Pintz and C.Y. Yıldırım, Primes in tuples. I, Ann. of Math. (2), 170 (2009), 819–862.
É. Goudout, Théorème d'Erdős–Kac dans presque tous les petits intervalles, Acta Arith., 182 (2018), 101–116.
A. Granville, Primes in intervals of bounded length, Bull. Amer. Math. Soc. (N.S.), 52 (2015), 171–222.
G.H. Hardy and J.E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math., 44 (1923), 1–70.
W. Huang and X. Wu, On the set of the difference of primes, Proc. Amer. Math. Soc., 145 (2017), 3787–3793.
D.A. Kaptan, A note on small gaps between primes in arithmetic progressions, Acta Arith., 172 (2016), 351–375.
O. Klurman, Correlations of multiplicative functions and applications, Compos. Math., 153 (2017), 1622–1657.
O. Klurman and A.P. Mangerel, Rigidity theorems for multiplicative functions, Math. Ann., 372 (2018), 651–697.
E. Kowalski, Gaps between prime numbers and primes in arithmetic progressions [after Y. Zhang and J. Maynard], Astérisque, 367-368 (2015), 327–366.
S. Lester, K. Matomäki and M. Radziwiłł, Small scale distribution of zeros and mass of modular forms, J. Eur. Math. Soc. (JEMS)}, 20 (2018), 1595–1627.
H. Li and H. Pan, Bounded gaps between primes of a special form, Int. Math. Res. Not. IMRN, 2015 (2015), 12345–12365.
H. Maier and M.Th. Rassias, Large gaps between consecutive prime numbers containing perfect k-th powers of prime numbers, J. Funct. Anal., 272 (2017), 2659–2696.
K. Matomäki and M. Radziwiłł, Multiplicative functions in short intervals, Ann. of Math. (2), 183 (2016), 1015–1056.
K. Matomäki, M. Radziwiłł and T. Tao, An averaged form of Chowla's conjecture, Algebra Number Theory, 9 (2015), 2167–2196.
K. Matomäki, M. Radziwiłł and }T. Tao, Sign patterns of the Liouville and Möbius functions, Forum Math. Sigma, 4 (2016), e14.
K. Matomäki and X. Shao, Vinogradov's three primes theorem with almost twin primes, Compos. Math., 153 (2017), 1220–1256.
H. Parshall, Small gaps between configurations of prime polynomials, J. Number Theory, 162 (2016), 35–53.
G.Z. Pil'tjaĭ, The magnitude of the difference between consecutive primes, In: Studies in Number Theory. No. 4, Izdat. Saratov. Univ., Saratov, 1972, pp. 73–79.
J. Pintz, On the ratio of consecutive gaps between primes, In: Analytic Number Theory, Springer-Verlag, 2015, pp. 285–304.
J. Pintz, Patterns of primes in arithmetic progressions, In: Number Theory—Diophantine Problems, Uniform Distribution and Applications, Springer-Verlag, 2017, pp. 369–379.
P. Pollack, Bounded gaps between primes with a given primitive root, Algebra Number Theory, 8 (2014), 1769–1786.
P. Pollack and L. Thompson, Arithmetic functions at consecutive shifted primes, Int. J. Number Theory, 11 (2015), 1477–1498.
D.H.J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes, Res. Math. Sci., 1 (2014), Art. 12.
D.H.J. Polymath, New equidistribution estimates of Zhang type, Algebra Number Theory, 8 (2014), 2067–2199.
R.A. Rankin, The difference between consecutive prime numbers. IV, Proc. Amer. Math. Soc., 1 (1950), 143–150.
G. Ricci, Sull'andamento della differenza di numeri primi consecutivi, Riv. Mat. Univ. Parma, 5 (1954), 3–54.
K. Soundararajan, Small gaps between prime numbers: the work of Goldston–Pintz–Yıldırım, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 1–18.
K. Soundararajan, The Liouville function in short intervals, Astérisque, 390 (2017), 453–479; Séminaire Bourbaki. Vol. 2015/2016, 1104–1119.
T. Tao, The logarithmically averaged Chowla and Elliott conjectures for two-point correlations, Forum Math. Pi, 4 (2016), e8.
J. Teräväinen, Almost primes in almost all short intervals, Math. Proc. Cambridge Philos. Soc., 161 (2016), 247–281.
J. Teräväinen, On binary correlations of multiplicative functions, Forum Math. Sigma, 6 (2018), e10.
L. Troupe, Bounded gaps between prime polynomials with a given primitive root, Finite Fields Appl., 37 (2016), 295–310.
S. Uchiyama, On the difference between consecutive prime numbers. Collection of articles in memory of Juriĭ Vladimirovič Linnik, Acta Arith., 27 (1975), 153–157.
A.I. Vinogradov, The density hypothesis for Dirichet L-series, Izv. Akad. Nauk SSSR Ser. Mat., 29 (1965), 903–934.
J. Wu, Chen's double sieve, Goldbach's conjecture and the twin prime problem, Acta Arith., 114 (2004), 215–273.