The translation factor eIF5A and human cancer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rossi, 2014, eIF5A and EF-P: two unique translation factors are now traveling the same road, Wiley interdisciplinary reviews: RNA, 5, 209, 10.1002/wrna.1211
Caraglia, 2011, eIF5A isoforms and cancer: two brothers for two functions?, Amino Acids, 44, 103, 10.1007/s00726-011-1182-x
Dever, 2014, The hypusine-containing translation factor eIF5A, Crit. Rev. Biochem. Mol. Biol., 49, 413, 10.3109/10409238.2014.939608
Wang, 2013, Roles of eukaryotic initiation factor 5A2 in human cancer, Int. J. Biol. Sci., 9, 1013, 10.7150/ijbs.7191
Kemper, 1976, Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta, J. Biol. Chem., 251, 5551, 10.1016/S0021-9258(17)33095-8
Schreier, 1977, Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors, J. Mol. Biol., 116, 727, 10.1016/0022-2836(77)90268-6
Benne, 1978, Purification and characterization of protein synthesis initiation factors eIF-1, eIF-4C, eIF-4D, and eIF-5 from rabbit reticulocytes, J. Biol. Chem., 253, 3070, 10.1016/S0021-9258(17)40804-0
Duncan, 1986, Changes in eIF-4D hypusine modification or abundance are not correlated with translational repression in HeLa cells, J. Biol. Chem., 261, 12903, 10.1016/S0021-9258(18)67178-9
Smit-McBride, 1989, Protein synthesis initiation factor eIF-4D. Functional comparison of native and unhypusinated forms of the protein, J. Biol. Chem., 264, 18527, 10.1016/S0021-9258(18)51499-X
Smit-McBride, 1989, Sequence determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine-containing protein, J. Biol. Chem., 264, 1578, 10.1016/S0021-9258(18)94226-2
Jenkins, 2001, Human eIF5A2 on chromosome 3q25–q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression, Genomics, 71, 101, 10.1006/geno.2000.6418
Guan, 2001, Isolation of a novel candidate oncogene within a frequently amplified region at 3q26 in ovarian cancer, Cancer Res., 61, 3806
Clement, 2003, Identification and characterization of eukaryotic initiation factor 5A-2, Eur. J. Biochem., 270, 4254, 10.1046/j.1432-1033.2003.03806.x
Gordon, 1987, Eukaryotic initiation factor 4D, the hypusine-containing protein, is conserved among eukaryotes, J. Biol. Chem., 262, 16585, 10.1016/S0021-9258(18)49296-4
Schnier, 1991, Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae, Mol. Cell. Biol., 11, 3105, 10.1128/MCB.11.6.3105
Schwelberger, 1993, Translation initiation factor eIF-5A expressed from either of two yeast genes or from human cDNA. Functional identity under aerobic and anaerobic conditions, J. Biol. Chem., 268, 14018, 10.1016/S0021-9258(19)85203-1
Cooper, 1983, Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D, Proc. Natl. Acad. Sci. U. S. A., 80, 1854, 10.1073/pnas.80.7.1854
Sievert, 2014, A novel mouse model for inhibition of DOHH-mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation, Dis. Models Mech., 7, 963, 10.1242/dmm.014449
Weir, 2004, Mmd1p, a novel, conserved protein essential for normal mitochondrial morphology and distribution in the fission yeast Schizosaccharomyces pombe, Mol. Biol. Cell, 15, 1656, 10.1091/mbc.E03-06-0371
Park, 2006, Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme, Proc. Natl. Acad. Sci. U. S. A., 103, 51, 10.1073/pnas.0509348102
Doerfel, 2013, EF-P is essential for rapid synthesis of proteins containing consecutive proline residues, Science, 339, 85, 10.1126/science.1229017
Bullwinkle, 2013, (R)-beta-lysine-modified elongation factor P functions in translation elongation, J. Biol. Chem., 288, 4416, 10.1074/jbc.M112.438879
Mémin, 2014, Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation, Cancer Res., 74, 552, 10.1158/0008-5472.CAN-13-0474
Beninati, 1995, Identification of a substrate site for transglutaminases on the human protein synthesis initiation factor 5A, Biochem. J., 305, 725, 10.1042/bj3050725
Ishfaq, 2012, The role of acetylation in the subcellular localization of an oncogenic isoform of translation factor eIF5A, Biosci. Biotechnol. Biochem., 76, 2165, 10.1271/bbb.120620
Ishfaq, 2012, Acetylation regulates subcellular localization of eukaryotic translation initiation factor 5A (eIF5A), FEBS Lett., 586, 3236, 10.1016/j.febslet.2012.06.042
Kang, 1993, Translation initiation factor eIF-5A, the hypusine-containing protein, is phosphorylated on serine in Saccharomyces cerevisiae, J. Biol. Chem., 268, 14750, 10.1016/S0021-9258(18)82396-1
Klier, 1993, Determination and mutational analysis of the phosphorylation site in the hypusine-containing protein Hyp2p, FEBS Lett., 334, 360, 10.1016/0014-5793(93)80712-4
Tong, 2009, Crystal structure of human eIF5A1: insight into functional similarity of human eIF5A1 and eIF5A2, Proteins, 75, 1040, 10.1002/prot.22378
Glick, 1975, Identification of a soluble protein that stimulates peptide bond synthesis, Proc. Natl. Acad. Sci. U. S. A., 72, 4257, 10.1073/pnas.72.11.4257
Glick, 1979, Peptide bond formation stimulated by protein synthesis factor EF-P depends on the aminoacyl moiety of the acceptor, Eur. J. Biochem./FEBS, 97, 23, 10.1111/j.1432-1033.1979.tb13081.x
Blaha, 2009, Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome, Science, 325, 966, 10.1126/science.1175800
Gutierrez, 2013, eIF5A promotes translation of polyproline motifs, Mol. Cell, 51, 35, 10.1016/j.molcel.2013.04.021
Hoque, 2009, Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A, Retrovirology, 6, 90, 10.1186/1742-4690-6-90
Li, 2014, Increased expression of EIF5A2, via hypoxia or gene amplification, contributes to metastasis and angiogenesis of esophageal squamous cell carcinoma, Gastroenterology, 146, 1701, 10.1053/j.gastro.2014.02.029
Zuk, 1998, A single amino acid substitution in yeast eIF-5A results in mRNA stabilization, EMBO J., 17, 2914, 10.1093/emboj/17.10.2914
Schrader, 2006, Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathway, J. Biol. Chem., 281, 35336, 10.1074/jbc.M601460200
Hofmann, 2001, Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin, J. Cell Biol., 152, 895, 10.1083/jcb.152.5.895
Henderson, 2011, Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A., 108, 6415, 10.1073/pnas.1008150108
Saini, 2009, Hypusine-containing protein eIF5A promotes translation elongation, Nature, 459, 118, 10.1038/nature08034
Li, 2010, eIF5A promotes translation elongation, polysome disassembly and stress granule assembly, PLoS One, 5, e9942, 10.1371/journal.pone.0009942
Ude, 2013, Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches, Science, 339, 82, 10.1126/science.1228985
Woolstenhulme, 2013, Nascent peptides that block protein synthesis in bacteria, Proc. Natl. Acad. Sci. U. S. A., 110, E878, 10.1073/pnas.1219536110
Morgan, 2013, Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome, PLoS One, 8, e53785, 10.1371/journal.pone.0053785
Mandal, 2014, Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution, PLoS One, 9, e111800, 10.1371/journal.pone.0111800
Ingolia, 2011, Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes, Cell, 147, 789, 10.1016/j.cell.2011.10.002
Elgamal, 2014, EF-P dependent pauses integrate proximal and distal signals during translation, PLoS Genet., 10, e1004553, 10.1371/journal.pgen.1004553
Hersch, 2013, Divergent protein motifs direct elongation factor P-mediated translational regulation in Salmonella enterica and Escherichia coli, MBio, 4, 10.1128/mBio.00180-13
Peil, 2013, Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P, Proc. Natl. Acad. Sci. U. S. A., 110, 15265, 10.1073/pnas.1310642110
Starosta, 2014, Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site, Nucleic Acids Res., 42, 10711, 10.1093/nar/gku768
Kang, 1994, Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae, J. Biol. Chem., 269, 3934, 10.1016/S0021-9258(17)41723-6
Hanauske-Abel, 1995, Detection of a sub-set of polysomal mRNAs associated with modulation of hypusine formation at the G1-S boundary. Proposal of a role for eIF-5A in onset of DNA replication, FEBS Lett., 366, 92, 10.1016/0014-5793(95)00493-S
Xu, 2004, Identification of mRNA that binds to eukaryotic initiation factor 5A by affinity co-purification and differential display, Biochem. J., 384, 585, 10.1042/BJ20041232
Guan, 2004, Oncogenic role of eIF-5A2 in the development of ovarian cancer, Cancer Res., 64, 4197, 10.1158/0008-5472.CAN-03-3747
Chen, 2003, Proteomic analysis of eIF-5A in lung adenocarcinomas, Proteomics, 3, 496, 10.1002/pmic.200390063
Lee, 2010, Prognostic significance and therapeutic potential of eukaryotic translation initiation factor 5A (eIF5A) in hepatocellular carcinoma, Int. J. Cancer, 127, 968, 10.1002/ijc.25100
Clement, 2006, Differential expression of eIF5A-1 and eIF5A-2 in human cancer cells, FEBS J., 273, 1102, 10.1111/j.1742-4658.2006.05135.x
Luo, 2009, Overexpression of EIF-5A2 predicts tumor recurrence and progression in pTa/pT1 urothelial carcinoma of the bladder, Cancer Sci., 100, 896, 10.1111/j.1349-7006.2009.01126.x
Chen, 2002, Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors, Clin. Cancer Res., 8, 2298
Cracchiolo, 2004, Eukaryotic initiation factor 5A-1 (eIF5A-1) as a diagnostic marker for aberrant proliferation in intraepithelial neoplasia of the vulva, Gynecol. Oncol., 94, 217, 10.1016/j.ygyno.2004.03.018
Lam, 2010, Identification of distinctive protein expression patterns in colorectal adenoma, Proteomics Clin. Appl., 4, 60, 10.1002/prca.200900084
Tunca, 2013, Overexpression of CK20, MAP3K8 and EIF5A correlates with poor prognosis in early-onset colorectal cancer patients, J. Cancer Res. Clin. Oncol., 139, 691, 10.1007/s00432-013-1372-x
Shang, 2014, CHIP/Stub1 interacts with eIF5A and mediates its degradation, Cell. Signal., 26, 1098, 10.1016/j.cellsig.2014.01.030
Preukschas, 2012, Expression of eukaryotic initiation factor 5A and hypusine forming enzymes in glioblastoma patient samples: implications for new targeted therapies, PLoS One, 7, e43468, 10.1371/journal.pone.0043468
Fujimura, 2014, A hypusine-eIF5A-PEAK1 switch regulates the pathogenesis of pancreatic cancer, Cancer Res., 74, 6671, 10.1158/0008-5472.CAN-14-1031
Balabanov, 2007, Hypusination of eukaryotic initiation factor 5A (eIF5A): a novel therapeutic target in BCR-ABL-positive leukemias identified by a proteomics approach, Blood, 109, 1701, 10.1182/blood-2005-03-037648
Ziegler, 2012, Evaluation of deoxyhypusine synthase inhibitors targeting BCR-ABL positive leukemias, Investig. New Drugs, 30, 2274, 10.1007/s10637-012-9810-1
Scuoppo, 2012, A tumour suppressor network relying on the polyamine-hypusine axis, Nature, 487, 244, 10.1038/nature11126
Coller, 2000, Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion, Proc. Natl. Acad. Sci. U. S. A., 97, 3260, 10.1073/pnas.97.7.3260
Boon, 2001, N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis, EMBO J., 20, 1383, 10.1093/emboj/20.6.1383
Chen, 1997, Marked elevation of hypusine formation activity on eukaryotic initiation factor 5A in v-HA-RAS transformed mouse NIH3T3 cells, Cancer Lett., 115, 235, 10.1016/S0304-3835(97)04741-1
Hanauske-Abel, 2013, Drug-induced reactivation of apoptosis abrogates HIV-1 infection, PLoS One, 8, e74414, 10.1371/journal.pone.0074414
Yang, 2009, Expression and amplification of eIF-5A2 in human epithelial ovarian tumors and overexpression of EIF-5A2 is a new independent predictor of outcome in patients with ovarian carcinoma, Gynecol. Oncol., 112, 314, 10.1016/j.ygyno.2008.10.024
Xie, 2008, Overexpression of EIF-5A2 is associated with metastasis of human colorectal carcinoma, Hum. Pathol., 39, 80, 10.1016/j.humpath.2007.05.011
Chen, 2009, Overexpression of EIF-5A2 is an independent predictor of outcome in patients of urothelial carcinoma of the bladder treated with radical cystectomy, Cancer Epidemiol. Biomarkers Prev., 18, 400, 10.1158/1055-9965.EPI-08-0754
Wei, 2014, EIF5A2 predicts outcome in localised invasive bladder cancer and promotes bladder cancer cell aggressiveness in vitro and in vivo, Br. J. Cancer, 110, 1767, 10.1038/bjc.2014.52
Tang, 2010, Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma, Hepatology, 51, 1255, 10.1002/hep.23451
Wang, 2014, Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression, Oncotarget, 5, 6716, 10.18632/oncotarget.2236
He, 2011, Overexpression of eIF5A-2 is an adverse prognostic marker of survival in stage I non-small cell lung cancer patients, Int. J. Cancer, 129, 143, 10.1002/ijc.25669
Xu, 2014, Cisplatin sensitivity is enhanced in non-small cell lung cancer cells by regulating epithelial–mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2, BMC Pulm. Med., 14, 174, 10.1186/1471-2466-14-174
Meng, 2015, Overexpression of eukaryotic translation initiation factor 5A2 (EIF5A2) correlates with cell aggressiveness and poor survival in gastric cancer, PLoS One, 10, e0119229, 10.1371/journal.pone.0119229
Zhu, 2012, Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial–mesenchymal transition, Gut, 61, 562, 10.1136/gutjnl-2011-300207
Marchet, 2007, Gene expression profile of primary gastric cancer: towards the prediction of lymph node status, Ann. Surg. Oncol., 14, 1058, 10.1245/s10434-006-9090-0
Francis, 2014, SNS01-T modulation of eIF5A inhibits B-cell cancer progression and synergizes with bortezomib and lenalidomide, Mol. Ther., 22, 1643, 10.1038/mt.2014.24
Taylor, 2007, Eukaryotic translation initiation factor 5A induces apoptosis in colon cancer cells and associates with the nucleus in response to tumour necrosis factor alpha signalling, Exp. Cell Res., 313, 437, 10.1016/j.yexcr.2006.09.030
Jin, 2008, Suppression of primary and disseminated murine tumor growth with eIF5A1 gene therapy, Gene Ther. Mol. Biol., 207
Ramaswamy, 2003, A molecular signature of metastasis in primary solid tumors, Nat. Genet., 33, 49, 10.1038/ng1060
Jasiulionis, 2007, Inhibition of eukaryotic translation initiation factor 5A (eIF5A) hypusination impairs melanoma growth, Cell Biochem. Funct., 25, 109, 10.1002/cbf.1351
Zhou, 2010, The antitumor activity of the fungicide ciclopirox, Int. J. Cancer, 127, 2467, 10.1002/ijc.25255
Eberhard, 2009, Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells, Blood, 114, 3064, 10.1182/blood-2009-03-209965
Minden, 2014, Oral ciclopirox olamine displays biological activity in a phase I study in patients with advanced hematologic malignancies, Am. J. Hematol., 89, 363, 10.1002/ajh.23640