The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis

American Journal of Botany - Tập 92 Số 1 - Trang 142-166 - 2005
Joey Shaw1, Edgar B. Lickey1, John T. Beck1, Susan Beth Farmer1, Wusheng Liu1, Jermey Miller1, Kunsiri Chaw Siripun1, Charles Winder1, Edward E. Schilling1, Randall L. Small1
1Department of Botany, 437 Hesler Biology, University of Tennessee, Knoxville, Tennessee 37996 USA.

Tóm tắt

Chloroplast DNA sequences are a primary source of data for plant molecular systematic studies. A few key papers have provided the molecular systematics community with universal primer pairs for noncoding regions that have dominated the field, namely trnL‐trnF and trnK/matK. These two regions have provided adequate information to resolve species relationships in some taxa, but often provide little resolution at low taxonomic levels. To obtain better phylogenetic resolution, sequence data from these regions are often coupled with other sequence data. Choosing an appropriate cpDNA region for phylogenetic investigation is difficult because of the scarcity of information about the tempo of evolutionary rates among different noncoding cpDNA regions. The focus of this investigation was to determine whether there is any predictable rate heterogeneity among 21 noncoding cpDNA regions identified as phylogenetically useful at low levels. To test for rate heterogeneity among the different cpDNA regions, we used three species from each of 10 groups representing eight major phylogenetic lineages of phanerogams. The results of this study clearly show that a survey using as few as three representative taxa can be predictive of the amount of phylogenetic information offered by a cpDNA region and that rate heterogeneity exists among noncoding cpDNA regions.

Từ khóa


Tài liệu tham khảo

Aagesen L., 2003, The phylogeny of the Alstroemeriaceae, based on morphology, rps16 intron, and rbcL sequence data., Systematic Botany, 28, 47

10.1007/BF00569337

10.1016/S1055-7903(03)00208-2

10.1007/BF00985737

10.1111/j.1095-8339.2001.tb01097.x

10.1007/s10265-003-0103-9

10.1046/j.1095-8339.2003.t01-1-00158.x

10.1007/BF01089291

10.2307/2657094

10.2307/3558389

10.1007/PL00013885

10.1006/mpev.1999.0696

10.1016/1055-7903(92)90030-K

10.2307/2399880

10.1080/106351598260879

10.1046/j.1365-294X.2001.01299.x

Bayer R. J., 2002, Phylogeny of Australian Gnaphalieae (Asteraceae) based on chloroplast and nuclear sequences, the trnL intron (trnL‐trnF intergenic spacer, matK, and ETS., Systematic Botany, 27, 801

10.2307/2656838

10.2307/3558434

10.1007/978-3-0348-7527-1_23

10.1046/j.1420-9101.2003.00577.x

Bortiri E. S., 2001, Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL‐trnF spacer DNA., Systematic Botany, 26, 797

10.1016/S1055-7903(02)00240-3

Butterworth C. A., 2002, Molecular systematics of the tribe Cacteae (Cactaceae: Cactoideae): a phylogeny based on rpl16 intron sequence variation., Systematic Botany, 27, 257

Campagna M. L., 1998, The intron in chloroplast gene rpL16 is missing from the flowering plant families Geraniaceae, Goodeniaceae, and Plumbaginaceae., Transactions of the Illinois State Academy of Science, 91, 1

10.2307/3558413

10.1006/anbo.2000.1262

10.2307/2399846

10.1007/s006060170015

10.2307/2419803

10.1073/pnas.91.15.6795

Cranfill R. B.2001.Phylogenetic utility of plastid ribosomal protein S4 (rpS4) in land plants.American Journal of Botany87: 121 (Abstract).

10.3732/ajb.89.4.707

10.1006/anbo.1999.1003

10.3732/ajb.89.1.132

10.1111/j.1558-5646.1996.tb03638.x

10.1111/j.1365-294X.1995.tb00201.x

10.1139/b02-119

10.1139/b99-086

10.1006/mpev.1996.0053

10.2307/2656915

10.1007/978-1-4615-3276-7_2

10.1017/S0960428601000658

10.1007/s10592-005-9073-x

10.2307/2419496

10.1046/j.1365-294X.1997.00193.x

10.1006/mpev.2001.0952

10.1007/BF00986196

10.1046/j.1365-294X.1996.00123.x

10.1007/s006060200009

10.1006/mpev.2000.0844

10.1086/344741

Gaskin J. F., 2003, Molecular phylogenetic investigation of U.S. Invasive Tamarix., Systematic Botany, 28, 86

10.3732/ajb.89.12.1967

Gene Codes Corp., 1998, Sequencher, version 3.1.1.

Gielly L., 1994, The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences., Molecular Biology and Evolution, 11, 769

10.1016/S1055-7903(02)00235-X

10.1006/mpev.1993.1006

10.1016/S1055-7903(02)00022-2

Hamilton M. B., 1999, Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation., Molecular Ecology, 8, 521

10.1038/43597

10.1093/molbev/msg190

10.2307/2656689

10.3732/ajb.89.7.1085

10.1016/S1055-7903(02)00404-9

10.2307/2445819

10.3732/ajb.90.12.1758

10.1007/BF02464880

10.1073/pnas.91.11.5129

10.3732/ajb.90.6.931

10.2307/2399877

10.2307/2656638

10.3732/ajb.90.8.1215

10.3732/ajb.90.1.116

10.1073/pnas.84.16.5818

Jensen U. S. B.HootJ. T.JohanssonandK.Kosuge.1995.Systematics and phylogeny of the Ranunculaceae—a revised family concept on the basis of molecular data.Plant Systematics and EvolutionSuppl. 9273–280.

Jobson R. W., 2003, Molecular phylogenetics of Lentibulariaceae inferred from plastid rpS16 intron and trnL‐F DNA sequences: implications for character evolution and biogeography., Systematic Botany, 28, 157

10.2307/2419718

10.2307/2446212

10.1006/mpev.1998.0516

10.1007/PL00013853

10.2307/2666142

10.3732/ajb.89.10.1651

10.1006/mpev.1997.0432

10.1073/pnas.92.22.10379

10.1111/j.0014-3820.2003.tb00215.x

10.1080/14620316.2003.11511612

Klak C. T., 2003, A molecular systematic study of the Lampranthus group (Aizoaceae) based on the chloroplast trnT‐trnF and nuclear ITS and 5S NTS sequence data., Systematic Botany, 28, 70

10.2307/2656874

10.1016/j.ympev.2003.10.009

10.2307/3558432

Les D. H., 2002, Phylogeny and systematics of Lemnaceae, the duckweed family., Systematic Botany, 27, 221

Levinson G., 1987, Slipped‐strand mispairing: a major mechanism for DNA sequence evolution., Molecular Biology and Evolution, 4, 203

10.1139/g01-074

10.1007/BF00986193

10.3732/ajb.89.8.1311

10.1086/323444

10.3732/ajb.90.2.321

10.2307/2419436

10.2307/2657071

Miller J. T., 2003, A phylogenetic analysis of the Acacieae and Ingeae (Mimosoideae: Fabaceae) based on trnK, matK, psbA‐trnH, and trnL/trnF sequence data., Systematic Botany, 28, 558

Mort M. E., 2001, Phylogenetics and evolution of the Macaronesian clade of Crassulaceae inferred from nuclear and chloroplast sequence data., Systematic Botany, 27, 271

10.1007/BF00336789

10.3732/ajb.90.3.471

10.2307/3558431

10.1007/BF00317074

10.1007/BF00355398

10.3732/ajb.89.2.312

10.1007/BF00351728

10.2307/2656601

10.1266/ggs.76.39

10.1038/322572a0

10.1002/j.1537-2197.1994.tb15615.x

10.2307/2399876

10.1093/sysbio/43.4.467

10.1086/324046

Olson M. E., 2002, Combining data from DNA sequences and morphology for a phylogeny of Moringaceae (Brassicales)., Systematic Botany, 27, 55

10.1007/BF00987959

Pacak A., 2000, Molecular data concerning alloploid character and the origin of chloroplast and mitochondrial genomes in the liverwort species Pellia borealis., Journal of Plant Biotechnology, 2, 101

Palmer J. D., 1991, Plastid chromosomes: structure and evolution., Cell Culture and Somatic Cell Genetics of Plants, 7, 5

10.25224/1097-993X-6.1.5

10.1007/s00606-003-0019-9

10.3732/ajb.90.3.445

Pfeil B. E., 2002, Phylogeny of Hibiscus and the tribe Hibisceae (Malvaceae) using chloroplast DNA sequences of ndhF and the rpl16 intron., Systematic Botany, 27, 333

10.3732/ajb.89.8.1342

10.2307/2419610

Popp M., 2001, Infarring the history kf the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences., Molecular Systematics and Evolution, 20, 474

10.1093/nar/14.8.3181

10.1016/S0304-4238(01)00358-2

10.2307/3558390

10.2307/2656778

10.2307/2656724

10.1086/284693

10.1007/s00606-002-0226-9

10.3732/ajb.90.5.777

10.1046/j.1471-8278.2001.00031.x

10.3732/ajb.90.3.496

10.2307/2446155

10.2307/2446510

10.3732/ajb.90.2.293

Schultheis L. M., 2001, Systematics of Downingia (Campanulaceae) based on molecular sequence data: implications for floral and chromosome evolution., Systematic Botany, 26, 603

10.1007/s00606-003-0013-2

10.2307/2419548

10.1639/0007-2745(2000)103[0277:POTSBO]2.0.CO;2

10.3732/ajb.91.6.985

10.3732/ajb.90.7.1071

10.2307/2446640

10.1640/0002-8444(2002)092[0131:IROTTF]2.0.CO;2

10.2307/3298639

10.1007/s10265-003-0118-2

10.2307/2419717

10.3732/ajb.89.9.1510

10.3732/ajb.89.12.2007

10.1046/j.1365-294X.2002.01595.x

10.1007/BF00037152

Tate J. A., 2003, Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species., Systematic Botany, 28, 723

Thompson J. D. D. G.HigginsandT. J.Gibson.2001.ClustalX. Program available atftp://ftp‐igbmc.u‐strasbg.fr/pub/ClustalX/.

10.1007/BF00279998

10.3732/ajb.90.10.1455

10.1073/pnas.91.21.9794

10.1023/A:1007564209282

10.2307/2656672

10.1007/s006060170075

Westhof E., 1996, Ribosomal RNA and group I introns

10.1016/S1055-7903(02)00210-5

10.2307/2446141

10.1073/pnas.84.24.9054

10.1073/pnas.89.22.10648

10.1007/s001220051537

10.3732/ajb.90.3.339

10.1016/S1055-7903(02)00026-X

10.1006/mpev.1999.0729

10.1046/j.1365-294x.2000.00963.x

10.1146/annurev.pp.38.060187.002135