The topology of the analog of Kovalevskaya integrability case on the Lie algebra so(4) under zero area integral

Vladislav Kibkalo1
1Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. T. Fomenko. “The Topology of Surfaces of Constant Energy in Integrable Hamiltonian Systems, and Obstructions to Iutegrabilitv.” Izvestiva Akad. Nauk SSSR 50 (6). 1276 (1986) [Math, of the USSR Izvestiva 29 (3). 629 (1987)].

A. T. Fomenko and H. Zieschang. “On the Topology of the Three-Dimensional Manifolds Arising in Hamiltonian Mechanics” Doklady Akad. Nauk SSSR 294 (2), 283, (1987) [Soviet Math. Dokl. 35 (2), 520 (1987)].

S. V. Matveev and A. T. Fomenko, “Constant Energy Surfaces of Hamiltonian Systems, Enumeration of ThreeDimensional Manifolds in Increasing Order of Complexity, and Computation of Volumes of Closed Hyperbolic Manifolds,” Uspeklii Matem. Nauk 43 (1), 5 (1988). [Rus. Math. Surveys 43 (1), 3 (1988)].

A. T. Fomenko and H. Zieschang. “On Typical Topological Properties of Integrable Hamiltonian Systems.” Izvestiya Akad. Nauk SSSR, Ser. Matem. 52 (2), 378 (1988) [Math, of the USSR Izvestiya 32 (2), 385 (1989)].

A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems: Geometry, Topology, Classification (Izd-vo Udmurtsk. Univ., Izhevsk, 1999: Chapman and Hall, CRC Press, Boca Raton, L., N Y., Washington, 2004).

A. T. Fomenko and S. S. Nikolaenko, “The Chaplygin Case in Dynamics of a Rigid Body in Fluid is Orbitally Equivalent to the Euler Case in Rigid Body Dynamics and to the Jacobi Problem about Geodesics 011 the Ellipsoid,” J. Geom. and Pliys., 87, 115 (2015).

A. T. Fomenko and A. Yu. Konyaev, “Algebra and Geometry through Hamiltonian Systems,” in Continuous and Distributed Systems. Theory and Applications, Ed. byV. Z. Zgurovsky and V. A. Sadovnichiy, (Springer, 2014), pp. 3–21.

A. T. Fomenko and A. Yu. Konyaev, “New Approach to Symmetries and Singularities in Integrable Hamiltonian Systems,” Topol, and its Appl. 159, 1964 (2012).

A. T. Fomenko and E. A. Kudryavtseva, “Symmetries Groups of Nice Morse Functions on Surfaces,” Doklady Russ. Akad. Nauk, Ser. Matem. 446 (6) 615 (2012) [Doklady Math. 86 (2), 691 (2012)].

A. T. Fomenko, I. M. Nikonov, and E. A. Kudryavtseva, “Maximally Symmetric Cell Decompositions of Surfaces and their Coverings,” Matem. Sbornik 199 (9), 3 (2008). [Sbornik: Math. 199 (9), 1263 (2008)].

M. P. Kharlamov, Topoloaical Analysis of Inteqrable Problems in the Dynamics of a Riqid Body (Izd-vo LGU, Leningrad, 1988; arXiv:1401.1015).

A. V. Bolsinov, A. T. Fomenko, and P. H. Richter, “The Method of Loop Molecules and the Topology of the Kovalevskaya Top,” Matem. Sbornik 191 (2), 3 (2000). [Sbornik: Math. 191 (2), 151 (2000)].

I. V. Komarov, “Kowalewski Basis for the Hydrogen Atom,” Teor. and Mat. Fiz. 47 (1), 67 (1981). [Theor. and Math. Phys. 47 (1), 320 (1981)].

I. K. Kozlov, “The Topology of the Liouville Foliation for the Kovalevskaya Integrable Case on the Lie Algebra so(4),” Matem. Sbornik 205 (4), 79 (2014). [Sbornik: Math. 205 (4), 532 (2014)].

P. V. Morozov, “Topology of Liouville Foliations in the Steklov and the Sokolov Integrable Cases of Kirchhoff’s Equations,” Matem. Sbornik 195 (3), 69 (2004). [Sbornik: Math. 195 (3), 369 (2004)].

N. S. Slavina, “Topological Classification of Systems of Kovalevskaya-Yehia Type,” Matem. Sbornik 205 (1), 105 (2014). [Sbornik: Math. 205 (1), 101 (2014)].