Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hộp công cụ của composit nano dựa trên oxit nhôm anod hóa xốp: từ chuẩn bị đến ứng dụng
Tóm tắt
Các khuôn mẫu oxit nhôm anod hóa (AAO) đã được nghiên cứu sâu trong vài thập kỷ qua và đồng thời đã được áp dụng rộng rãi thông qua cả con đường hy sinh và không hy sinh. Trong nhiều ứng dụng không hy sinh, màng AAO được giữ lại như một phần của các vật liệu composite thu được; do đó, cấu trúc và địa hình của khuôn mẫu xác định phần lớn những ứng dụng tiềm năng. AAO có lỗ xuyên thấu, đồng dạng có các nano kênh thúc đẩy quá trình chuyển giao vật chất, trong khi AAO không đồng dạng với lớp rào cản thể hiện các khoang nano phù hợp như các容器 độc lập và đồng nhất. Bằng cách kết hợp hai loại màng AAO với các vật liệu hữu cơ và vô cơ đa dạng thông qua các tương tác vật lý hoặc liên kết hóa học, các composite AAO được thiết kế và áp dụng trong nhiều lĩnh vực đa dạng như xúc tác, nền tảng giải phóng thuốc, màng phân tách, thiết bị quang học, cảm biến, nuôi cấy tế bào, năng lượng và thiết bị điện tử. Do đó, trong bài đánh giá này, một góc nhìn về triển vọng thú vị cho sự phát triển bổ sung về composite AAO cả trong quá trình chuẩn bị và ứng dụng được cung cấp.
Từ khóa
#oxit nhôm anod hóa #composite nano #ứng dụng #xúc tác #màng phân tách #cảm biếnTài liệu tham khảo
Li Q, Li X, Wageh S, al-Ghamdi AA, Yu J (2015) CdS/Graphene Nanocomposite Photocatalysts. Adv Energy Mater 5:1500010. https://doi.org/10.1002/aenm.201500010
Komarneni S (1992) Feature article Nanocomposites. J Mater Chem 2:1219. https://doi.org/10.1039/jm9920201219
Leontiev AP, Volkova OY, Kolmychek IA, Venets AV, Pomozov AR, Stolyarov VS, Murzina TV, Napolskii KS (2019) Tuning the optical properties of hyperbolic metamaterials by controlling the volume fraction of metallic nanorods. Nanomaterials 9:739. https://doi.org/10.3390/nano9050739
Guozhong C (2004) Nanostructures and nanomaterials: synthesis, properties and applications. World Sci
Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12:44–50. https://doi.org/10.1016/j.cossms.2008.12.002
Gogotsi Y (2006) Nanomaterials handbook. CRC press
Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100:411. https://doi.org/10.1149/1.2781142
Lee W, Park SJ (2014) Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem Rev 114:7487–7556. https://doi.org/10.1021/cr500002z
Md Jani AM, Losic D, Voelcker NH (2013) Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog Mater Sci 58:636–704. https://doi.org/10.1016/j.pmatsci.2013.01.002
Mijangos C, Hernández R, Martín J (2016) A review on the progress of polymer nanostructures with modulated morphologies and properties, using nanoporous AAO templates. Prog Polym Sci 54–55:148–182. https://doi.org/10.1016/j.progpolymsci.2015.10.003
Kim TY, Jeong SH (2008) Highly ordered anodic alumina nanotemplate with about 14 nm diameter. Korean J Chem Eng 25:609–611. https://doi.org/10.1007/s11814-008-0102-6
Steinhart M (2008) Supramolecular organization of polymeric materials in nanoporous hard templates. In: Self-assembled nanomaterials II. Springer, pp 123–187
Zhang F, Liu X, Pan C, Zhu J (2007) Nano-porous anodic aluminium oxide membranes with 6-19 nm pore diameters formed by a low-potential anodizing process. Nanotechnology 18:345302. https://doi.org/10.1088/0957-4484/18/34/345302
Chu CW, Higaki Y, Cheng CH, Cheng MH, Chang CW, Chen JT, Takahara A (2017) Zwitterionic polymer brush grafting on anodic aluminum oxide membranes by surface-initiated atom transfer radical polymerization. Polym Chem 8:2309–2316. https://doi.org/10.1039/c7py00045f
Ran C, Ding G, Liu W, Deng Y, Hou W (2008) Wetting on Nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Langmuir 24:9952–9955. https://doi.org/10.1021/la801461j
Song Z, Fathizadeh M, Huang Y, Chu KH, Yoon Y, Wang L, Xu WL, Yu M (2016) TiO2 nanofiltration membranes prepared by molecular layer deposition for water purification. J Membr Sci 510:72–78. https://doi.org/10.1016/j.memsci.2016.03.011
Huang X, Mutlu H, Theato P (2020) A bioinspired hierarchical underwater superoleophobic surface with reversible pH response. Adv Mater Interfaces 7:2000101. https://doi.org/10.1002/admi.202000101
Guo Y, Zhang Y, Liu H, Lai SW, Li Y, Li Y, Hu W, Wang S, Che CM, Zhu D (2010) Assembled organic/inorganic p−n junction interface and photovoltaic cell on a single nanowire. J Phys Chem Lett 1:327–330. https://doi.org/10.1021/jz9002058
Oh JH, Lee HW, Mannsfeld S, Stoltenberg RM, Jung E, Jin YW, Kim JM, Yoo JB, Bao Z (2009) Solution-processed, high-performance n-channel organic microwire transistors. Proc Natl Acad Sci 106:6065–6070. https://doi.org/10.1073/pnas.0811923106
Shi W, Song S, Zhang H (2013) Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev 42:5714–5743. https://doi.org/10.1039/c3cs60012b
Rath A, Theato P (2020) Advanced AAO templating of nanostructured stimuli-responsive polymers: hype or hope? Adv Funct Mater 30:1902959. https://doi.org/10.1002/adfm.201902959
Santos A, Kumeria T, Losic D (2013) Nanoporous anodic aluminum oxide for chemical sensing and biosensors. TrAC-Trends Anal Chem 44:25–38. https://doi.org/10.1016/j.trac.2012.11.007
Sato A, Pennec Y, Shingne N, Thurn-Albrecht T, Knoll W, Steinhart M, Djafari-Rouhani B, Fytas G (2010) Tuning and switching the hypersonic phononic properties of elastic impedance contrast nanocomposites. ACS Nano 4:3471–3481. https://doi.org/10.1021/nn100519h
Muanchan P, Kurose T, Ito H (2019) Replication of mesoscale pore one-dimensional nanostructures: surface-induced phase separation of polystyrene/poly(vinyl alcohol) (PS/PVA) blends. Polymers (Basel) 11:1039. https://doi.org/10.3390/polym11061039
Song G, She X, Fu Z, Li J (2004) Preparation of good mechanical property polystyrene nanotubes with array structure in anodic aluminum oxide template using simple physical techniques. J Mater Res 19:3324–3328. https://doi.org/10.1557/JMR.2004.0427
Song C, Wang M, Liu X, Wang H, Chen X, Dai L (2017) Fabrication of high-capacity polyelectrolyte brush-grafted porous AAO-silica composite membrane via RAFT polymerization. Mater Sci Eng C 78:748–755. https://doi.org/10.1016/j.msec.2017.03.042
Ma S, Liu J, Ye Q, Wang D, Liang Y, Zhou F (2014) A general approach for construction of asymmetric modification membranes for gated flow nanochannels. J Mater Chem A 2:8804–8814. https://doi.org/10.1039/c4ta00126e
Wang W-C, Wang J, Liao Y, Zhang L, Cao B, Song G, She X (2010) Surface initiated ATRP of acrylic acid on dopamine-functionalized AAO membranes. J Appl Polym Sci 117:534–541. https://doi.org/10.1002/app.30939
Wassel E, Es-Souni M, Laghrissi A, Roth A, Dietze M, Es-Souni M (2019) Data supporting polymerization of anti-fouling polymer brushes polymerized on the pore walls of porous aluminium and titanium oxides. Data Br 23:103702. https://doi.org/10.1016/j.dib.2019.103702
Liu J, Ma S, Wei Q, Jia L, Yu B, Wang D, Zhou F (2013) Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis. Nanoscale 5:11894–11901. https://doi.org/10.1039/c3nr03901c
Kim JS, Kim TG, Kong WH, Park TG, Nam YS (2012) Thermally controlled wettability of a nanoporous membrane grafted with catechol-tethered poly(N-isopropylacrylamide). Chem Commun 48:9227–9229. https://doi.org/10.1039/c2cc32233a
Song C, Shi W, Jiang H, Tu J, Ge D (2011) PH-sensitive characteristics of poly(acrylic acid)-functionalized anodic aluminum oxide (AAO) membranes. J Membr Sci 372:340–345. https://doi.org/10.1016/j.memsci.2011.02.017
Cai Y, Chen D, Li N, Xu Q, Li H, He J, Lu J (2018) A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation. J Membr Sci 555:69–77. https://doi.org/10.1016/j.memsci.2018.03.042
Lee L-R, Karapala VK, Lin Y-L, He HC, Chen JT (2020) Intelligent environmental sensing: fabrication of switchable, reusable, and highly sensitive gas sensors with spiropyran-grafted anodic aluminum oxide templates. J Phys Chem C 124:11870–11876. https://doi.org/10.1021/acs.jpcc.0c01129
Vengatesh P, Kulandainathan MA (2015) Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance. ACS Appl Mater Interfaces 7:1516–1526. https://doi.org/10.1021/am506568v
Krismastuti FSH, Bayat H, Voelcker NH, Schönherr H (2015) Real time monitoring of layer-by-layer polyelectrolyte deposition and bacterial enzyme detection in nanoporous anodized aluminum oxide. Anal Chem 87:3856–3863. https://doi.org/10.1021/ac504626m
Wang J, Pan S (2017) Electrodeposition of vertically standing Ag nanoplates and nanowires on transparent conductive electrode using porous anodic aluminum oxide template. Nanotechnology 28:425601. https://doi.org/10.1088/1361-6528/aa8614
Winkler R, Tu W, Laskowski L, Adrjanowicz K (2020) Effect of surface chemistry on the glass-transition dynamics of poly(phenyl methyl siloxane) confined in alumina nanopores. Langmuir 36:7553–7565. https://doi.org/10.1021/acs.langmuir.0c01194
Liu C-T, Lin Y-L, Chu C-W, Chang CW, Chiu YJ, Chiu TY, Lee LR, Chen JT (2019) Asymmetries in porous membranes: fabrication of anodic aluminum oxide membranes with double-sized nanopores and controlled surface properties. J Phys Chem C 123:14540–14546. https://doi.org/10.1021/acs.jpcc.9b03079
Kwak SH, Kwon S-R, Baek S, Lim SM, Joo YC, Chung TD (2016) Densely charged polyelectrolyte-stuffed nanochannel arrays for power generation from salinity gradient. Sci Rep 6:26416. https://doi.org/10.1038/srep26416
Pol L, Acosta LK, Ferré-Borrull J, Marsal LF (2019) Aptamer-based nanoporous anodic alumina interferometric biosensor for real-time thrombin detection. Sensors 19:4543. https://doi.org/10.3390/s19204543
Haider A, Deminskyi P, Yilmaz M, Elmabruk K, Yilmaz I, Biyikli N (2018) Long-range ordered vertical III-nitride nano-cylinder arrays via plasma-assisted atomic layer deposition. J Mater Chem C 6:6471–6482. https://doi.org/10.1039/C8TC01165F
Cho GY, Noh S, Lee YH et al (2016) Properties of nanostructured undoped ZrO 2 thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells. J Vac Sci Technol A Vacuum, Surfaces, Film 34:01A151. https://doi.org/10.1116/1.4938105
Zhan H, Garrett DJ, Apollo NV, Ganesan K, Lau D, Prawer S, Cervenka J (2016) Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition. Sci Rep 6:19822. https://doi.org/10.1038/srep19822
Ji S, Cho GY, Yu W, Su PC, Lee MH, Cha SW (2015) Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate. ACS Appl Mater Interfaces 7:2998–3002. https://doi.org/10.1021/am508710s
Lee K, Kim H, Kim JH, Choi D (2020) Structural color and near-infrared tunability of ruthenium-coated anodic aluminum oxide by atomic layer deposition. Scr Mater 187:125–129. https://doi.org/10.1016/j.scriptamat.2020.06.007
Chat K, Tu W, Beena Unni A, Geppert-Rybczyńska M, Adrjanowicz K (2020) Study on the glass transition dynamics and crystallization kinetics of molecular liquid, dimethyl phthalate, confined in anodized aluminum oxide (AAO) nanopores with atomic layer deposition (ALD) coatings. J Mol Liq 311:113296. https://doi.org/10.1016/j.molliq.2020.113296
Fang Z-X, Chu C-W, Tsai C-C, Chang CW, Cheng MH, Chang CC, Chen JT (2020) Rayleigh-instability-induced transformation for confined polystyrene nanotubes prepared using the solvent-vapor-induced wetting method. Macromol Mater Eng 305:1900465. https://doi.org/10.1002/mame.201900465
Huang Y, Sarkar D, Chen X-G (2016) Fabrication of corrosion resistance micro-nanostructured superhydrophobic anodized aluminum in a one-step electrodeposition process. Metals (Basel) 6:47. https://doi.org/10.3390/met6030047
Nehra M, Dilbaghi AN, Singh V, Singhal NK, Kumar S (2020) Highly ordered and crystalline Cu nanowires in anodic aluminum oxide membranes for biomedical applications. Phys Status Solidi 217:1900842. https://doi.org/10.1002/pssa.201900842
Mebed AM, Abd-Elnaiem AM, Al-Hosiny NM (2016) Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates. Appl Phys A Mater Sci Process 122:565. https://doi.org/10.1109/TMAG.2019.2942946
Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54. https://doi.org/10.1039/B9PY00300B
Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554. https://doi.org/10.1021/cr9502357
Pujari SP, Scheres L, Marcelis ATM, Zuilhof H (2014) Covalent surface modification of oxide surfaces. Angew Chem Int Ed 53:6322–6356. https://doi.org/10.1002/anie.201306709
Szczepanski V, Vlassiouk I, Smirnov S (2006) Stability of silane modifiers on alumina nanoporous membranes. J Membr Sci 281:587–591. https://doi.org/10.1016/j.memsci.2006.04.027
Mutalib Jani A, Anglin EJ, McInnes SJP et al (2009) Nanoporous anodic aluminium oxide membranes with layered surface chemistry. Chem Commun 21:3062–3064. https://doi.org/10.1039/b901745c
Jani AMM, Kempson IM, Losic D, Voelcker NH (2010) Dressing in layers: layering surface functionalities in nanoporous aluminum oxide membranes. Angew Chem Int Ed 49:7933–7937. https://doi.org/10.1002/anie.201002504
Pathak A, Bora A, Braunschweig B, Meltzer C, Yan H, Lemmens P, Daum W, Schwartz J, Tornow M (2017) Nanocylindrical confinement imparts highest structural order in molecular self-assembly of organophosphonates on aluminum oxide. Nanoscale 9:6291–6295. https://doi.org/10.1039/c7nr02420g
Bauer T, Schmaltz T, Lenz T, Halik M, Meyer B, Clark T (2013) Phosphonate- and carboxylate-based self-assembled monolayers for organic devices: a theoretical study of surface binding on aluminum oxide with experimental support. ACS Appl Mater Interfaces 5:6073–6080. https://doi.org/10.1021/am4008374
Kim SY, Lee MY, Lee JY, Park YH, Kim HG, Jeong CJ, Mosaiab T, Park B, Park SY, in I (2013) Mussel-inspired engineering of an anodized aluminum oxide membrane. Chem Lett 42:902–903. https://doi.org/10.1246/cl.130269
ter Maat J, Regeling R, Ingham CJ et al (2011) Organic modification and subsequent biofunctionalization of porous anodic alumina using terminal alkynes. Langmuir 27:13606–13617. https://doi.org/10.1021/la203738h
Costa RR, Mano JF (2013) Layer-by-layer self-assembly techniques for nanostructured devices in tissue engineering. In: Nanomaterials in tissue engineering. Elsevier, pp 88–118
Peyratout CS, Dähne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed 43:3762–3783. https://doi.org/10.1002/anie.200300568
Ai S, Lu G, He Q, Li J (2003) Highly flexible polyelectrolyte nanotubes. J Am Chem Soc 125:11140–11141. https://doi.org/10.1021/ja0356378
Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064. https://doi.org/10.1039/b808639g
Shang J, Lin S, Theato P (2017) Fabrication of color changeable CO 2 sensitive nanofibers. Polym Chem 8:7446–7451. https://doi.org/10.1039/C7PY01628J
Chen F, Jiang X, Kuang T, Chang L, Fu D, Yang Z, Yang J, Fan P, Fei Z, Zhong M (2015) Effect of nanoporous structure and polymer brushes on the ionic conductivity of poly(methacrylic acid)/anode aluminum oxide hybrid membranes. RSC Adv 5:70204–70210. https://doi.org/10.1039/C5RA08990E
Li P-F, Xie R, Jiang J-C, Meng T, Yang M, Ju XJ, Yang L, Chu LY (2009) Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. J Membr Sci 337:310–317. https://doi.org/10.1016/j.memsci.2009.04.010
Jang JH, In I (2010) Poly(N-isopropylacrylamide)-grafted thermosensitive anodized aluminum oxide membrane. Chem Lett 39:1190–1191. https://doi.org/10.1246/cl.2010.1190
Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app
Nouri A, Wen C (2015) Introduction to surface coating and modification for metallic biomaterials. In: Surface coating and modification of metallic biomaterials. Elsevier, pp 3–60
Fan HJ, Werner P, Zacharias M (2006) Semiconductor nanowires: from self-organization to patterned growth. Small 2:700–717. https://doi.org/10.1002/smll.200500495
Ding D, Cai W, Long M, Wu H, Wu Y (2010) Optical, structural and thermal characteristics of CuCuAl2O 4 hybrids deposited in anodic aluminum oxide as selective solar absorber. Sol Energy Mater Sol Cells 94:1578–1581. https://doi.org/10.1016/j.solmat.2010.04.075
Zhang Q, Liu Z, Wang K, Zhai J (2015) Organic/inorganic hybrid nanochannels based on polypyrrole-embedded alumina nanopore arrays: Ph-and light-modulated ion transport. Adv Funct Mater 25:2091–2098. https://doi.org/10.1002/adfm.201404160
Duay J, Gillette E, Hu J, Lee SB (2013) Controlled electrochemical deposition and transformation of hetero-nanoarchitectured electrodes for energy storage. Phys Chem Chem Phys 15:7976–7993. https://doi.org/10.1039/c3cp50724f
Brzózka A, Fic K, Bogusz J, Brudzisz A, Marzec M, Gajewska M, Sulka G (2019) Polypyrrole–nickel hydroxide hybrid nanowires as future materials for energy storage. Nanomaterials 9:307. https://doi.org/10.3390/nano9020307
Lahav M, Weiss EA, Xu Q, Whitesides GM (2006) Core−Shell and segmented polymer−metal composite nanostructures. Nano Lett 6:2166–2171. https://doi.org/10.1021/nl061786n
Wen L, Wang Z, Mi Y, Xu R, Yu SH, Lei Y (2015) Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small 11:3408–3428. https://doi.org/10.1002/smll.201500120
Djokić SS, Cavallotti PL (2010) Electroless deposition: theory and applications. In: Electrodeposition. Springer, pp 251–289
Sha W, Wu X, Keong KG (2011) Electroless copper and nickel-phosphorus plating: processing, characterisation and modelling. Elsevier
Linga Reddy E, Lee HC, Kim DH (2015) Steam reforming of methanol over structured catalysts prepared by electroless deposition of Cu and Zn on anodically oxidized alumina. Int J Hydrog Energy 40:2509–2517. https://doi.org/10.1016/j.ijhydene.2014.12.094
Chen N, Kim DH, Kovacik P, Sojoudi H, Wang M, Gleason KK (2016) Polymer thin films and surface modification by chemical vapor deposition: recent progress. Annu Rev Chem Biomol Eng 7:373–393. https://doi.org/10.1146/annurev-chembioeng-080615-033524
Zhao C, Li Q, Wan W, Li J, Li J, Zhou H, Xu D (2012) Coaxial carbon-silicon-carbon nanotube arrays in porous anodic aluminum oxide templates as anodes for lithium ion batteries. J Mater Chem 22:12193–12197. https://doi.org/10.1039/c2jm31162c
Yang R, Asatekin A, Gleason KK (2012) Design of conformal, substrate-independent surface modification for controlled proteinadsorption by chemical vapor deposition (CVD). Soft Matter 8:31–43. https://doi.org/10.1039/C1SM06334K
Tufani A, Ince GO (2015) Permeability of small molecules through vapor deposited polymer membranes. J Appl Polym Sci 132:1–7. https://doi.org/10.1002/app.42453
Armagan E, Ozaydin Ince G (2015) Coaxial nanotubes of stimuli responsive polymers with tunable release kinetics. Soft Matter 11:8069–8075. https://doi.org/10.1039/C5SM01074H
Tenhaeff WE, Gleason KK (2008) Initiated and Oxidative chemical vapor deposition of polymeric thin films: iCVD and oCVD. Adv Funct Mater 18:979–992. https://doi.org/10.1002/adfm.200701479
Losic D, Cole MA, Dollmann B, Vasilev K, Griesser HJ (2008) Surface modification of nanoporous alumina membranes by plasma polymerization. Nanotechnology 19:245704. https://doi.org/10.1088/0957-4484/19/24/245704
Tufani A, Ozaydin Ince G (2017) Smart membranes with pH-responsive control of macromolecule permeability. J Membr Sci 537:255–262. https://doi.org/10.1016/j.memsci.2017.05.024
George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131. https://doi.org/10.1021/cr900056b
Velleman L, Triani G, Evans PJ, Shapter JG, Losic D (2009) Structural and chemical modification of porous alumina membranes. Microporous Mesoporous Mater 126:87–94. https://doi.org/10.1016/j.micromeso.2009.05.024
Al-Kaysi RO, Ghaddar TH, Guirado G (2009) Fabrication of one-dimensional organic nanostructures using anodic aluminum oxide templates. J Nanomater 2009:1–14. https://doi.org/10.1155/2009/436375
Kim J-U, Haberkorn N, Theato P, Zentel R (2011) Controlled fabrication of organic nanotubes via self-assembly of non-symmetric bis-acylurea. Colloid Polym Sci 289:1855–1862. https://doi.org/10.1007/s00396-011-2512-y
Cannon JP, Bearden SD, Gold SA (2010) Characterization of conjugated polymer/anodic aluminum oxide nanocomposites fabricated via template wetting. Compos Part A Appl Sci Manuf 41:836–841. https://doi.org/10.1016/j.compositesa.2010.02.014
Dong X, Tong F, Hanson KM, al-Kaysi RO, Kitagawa D, Kobatake S, Bardeen CJ (2019) Hybrid Organic-inorganic photon-powered actuators based on aligned diarylethene nanocrystals. Chem Mater 31:1016–1022. https://doi.org/10.1021/acs.chemmater.8b04568
Wu D, Zhang D, Ye Y, Ma L, Minhas B, Liu B, Terryn HA, Mol JMC, Li X (2019) Durable lubricant-infused anodic aluminum oxide surfaces with high-aspect-ratio nanochannels. Chem Eng J 368:138–147. https://doi.org/10.1016/j.cej.2019.02.163
Chen Z, Chen T, Sun X, Hinds BJ (2014) Dynamic electrochemical membranes for continuous affinity protein separation. Adv Funct Mater 24:4317–4323. https://doi.org/10.1002/adfm.201303707
Lee B, Hyun S, Jeon G, Kim EY, Kim J, Kim WJ, Kim JK (2016) Bioinspired dual stimuli-responsive membranous system with multiple on–off gates. ACS Appl Mater Interfaces 8:11758–11764. https://doi.org/10.1021/acsami.6b01788
Tufani A, Ozaydin Ince G (2019) Protein gating by vapor deposited Janus membranes. J Membr Sci 575:126–134. https://doi.org/10.1016/j.memsci.2019.01.013
Shi W, Shen Y, Jiang H, Song C, Ma Y, Mu J, Yang B, Ge D (2010) Lysine-attached anodic aluminum oxide (AAO)–silica affinity membrane for bilirubin removal. J Membr Sci 349:333–340. https://doi.org/10.1016/j.memsci.2009.11.066
Osmanbeyoglu HU, Hur TB, Kim HK (2009) Thin alumina nanoporous membranes for similar size biomolecule separation. J Membr Sci 343:1–6. https://doi.org/10.1016/j.memsci.2009.07.027
Liu K, Huang Z, Hemmatifar A, Oyarzun DI, Zhou J, Santiago JG (2018) Self-cleaning porous surfaces for dry condensation. ACS Appl Mater Interfaces 10:26759–26764. https://doi.org/10.1021/acsami.8b07261
Jo H, Haberkorn N, Pan J-A, Vakili M, Nielsch K, Theato P (2016) Fabrication of chemically tunable, hierarchically branched polymeric nanostructures by multi-branched anodic aluminum oxide templates. Langmuir 32:6437–6444. https://doi.org/10.1021/acs.langmuir.6b00163
Uchida K, Fujita M, Aoi Y, Saito M, Irie M (2001) Photochromism of diarylethenes on porous aluminum oxide: fatigue resistance and redox potentials of the photochromes. Chem Lett 30:366–367. https://doi.org/10.1246/cl.2001.366
Liu, Dunphy DR, Atanassov P et al (2004) Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nano Lett 4:551–554. https://doi.org/10.1021/nl0350783
Fujiwara M, Imura T (2015) Photo induced membrane separation for water purification and desalination using azobenzene modified anodized alumina membranes. ACS Nano 9:5705–5712. https://doi.org/10.1021/nn505970n
Song J, Oh H, Kong H, Jang J (2011) Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal. J Hazard Mater 187:311–317. https://doi.org/10.1016/j.jhazmat.2011.01.026
Kantipuly C, Katragadda S, Chow A, Gwsser H (1990) Chelating polymers and related supports for separation and preconcentration of trace metals. Talanta 37:491–517. https://doi.org/10.1016/0039-9140(90)80075-Q
Phuong NT, Andisetiawan A, Van Lam D et al (2016) Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates. Sci Rep 6:1–8. https://doi.org/10.1038/srep37673
Petukhov DI, Chernova EA, Kapitanova OO, Boytsova OV, Valeev RG, Chumakov AP, Konovalov OV, Eliseev AA (2019) Thin graphene oxide membranes for gas dehumidification. J Membr Sci 577:184–194. https://doi.org/10.1016/j.memsci.2019.01.041
Stair PC, Marshall C, Xiong G, Feng H, Pellin MJ, Elam JW, Curtiss L, Iton L, Kung H, Kung M, Wang HH (2006) Novel, uniform nanostructured catalytic membranes. Top Catal 39:181–186. https://doi.org/10.1007/s11244-006-0055-0
Yu Y, Wu X-J, Zhao M, Ma Q, Chen J, Chen B, Sindoro M, Yang J, Han S, Lu Q, Zhang H (2017) Anodized aluminum oxide templated synthesis of metal-organic frameworks used as membrane reactors. Angew Chem 129:593–596. https://doi.org/10.1002/ange.201610291
Lu S, An Z, He J, Li B (2012) Hierarchically-structured immobilized enzyme displaying the multi-functions of bio-membranes. J Mater Chem 22:3882–3888. https://doi.org/10.1039/c2jm14602a
Hussain MA, Irshad M, Haq EU, Park S, Atif M, Hakeem AS, Choi BG, Kim JW (2019) Porous anodic aluminum oxide as an efficient support for ruthenium-catalyzed aerobic oxidation of alcohols and amines. Ind Eng Chem Res 58:23025–23031. https://doi.org/10.1021/acs.iecr.9b06054
Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J (2016) Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv 2:e1501227. https://doi.org/10.1126/sciadv.1501227
Kwon CW, Son JW, Lee JH, Kim HM, Lee HW, Kim KB (2011) High-performance micro-solid oxide fuel cells fabricated on nanoporous anodic aluminum oxide templates. Adv Funct Mater 21:1154–1159. https://doi.org/10.1002/adfm.201002137
Chen J, Wang S, Ding L, Jiang Y, Wang H (2014) Performance of through-hole anodic aluminum oxide membrane as a separator for lithium-ion battery. J Membr Sci 461:22–27. https://doi.org/10.1016/j.memsci.2014.03.005
Ali HO (2017) Review of porous anodic aluminium oxide (AAO) applications for sensors, MEMS and biomedical devices. Trans Inst Met Finish 95:290–296. https://doi.org/10.1080/00202967.2017.1358514
Chen W, Gui X, Liang B, Yang R, Zheng Y, Zhao C, Li X, Zhu H, Tang Z (2017) Structural engineering for high sensitivity, ultrathin pressure sensors based on wrinkled graphene and anodic aluminum oxide membrane. ACS Appl Mater Interfaces 9:24111–24117. https://doi.org/10.1021/acsami.7b05515
Ma Y, Kaczynski J, Ranacher C, Roshanghias A, Zauner M, Abasahl B (2018) Nano-porous aluminum oxide membrane as filtration interface for optical gas sensor packaging. Microelectron Eng 198:29–34. https://doi.org/10.1016/j.mee.2018.06.013
Amouzadeh Tabrizi M, Ferré-Borrull J, Marsal LF (2020) Highly sensitive remote biosensor for the determination of lead (II) ions by using nanoporous anodic alumina modified with DNAzyme. Sensors Actuators B Chem 321:128314. https://doi.org/10.1016/j.snb.2020.128314
Xin W, Zhang Z, Huang X, Hu Y, Zhou T, Zhu C, Kong XY, Jiang L, Wen L (2019) High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat Commun 10:3876. https://doi.org/10.1038/s41467-019-11792-8
Kim S, Hyun S, Lee J, Lee KS, Lee W, Kim JK (2018) Anodized aluminum oxide/polydimethylsiloxane hybrid mold for roll-to-roll nanoimprinting. Adv Funct Mater 28:1800197. https://doi.org/10.1002/adfm.201800197
Murphy MP, Kim S, Sitti M (2009) Enhanced Adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Appl Mater Interfaces 1:849–855. https://doi.org/10.1021/am8002439
Carbone G, Pierro E, Gorb SN (2011) Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces. Soft Matter 7:5545. https://doi.org/10.1039/c0sm01482f
Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci 100:10603–10606. https://doi.org/10.1073/pnas.1534701100
Greiner C, del Campo A, Arzt E (2007) Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. Langmuir 23:3495–3502. https://doi.org/10.1021/la0633987
del Campo A, Greiner C, Álvarez I, Arzt E (2007) Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Adv Mater 19:1973–1977. https://doi.org/10.1002/adma.200602476
Zhang R, Zhang L, Tian N, Ma S, Liu Y, Yu B, Pei X, Zhou F (2017) The Tethered fibrillar hydrogels brushes for underwater antifouling. Adv Mater Interfaces 4. https://doi.org/10.1002/admi.201601039
Du T, Ma S, Pei X et al (2017) Bio-inspired design and fabrication of micro/nano-brush dual structural surfaces for switchable oil adhesion and antifouling. Small 13:1602020. https://doi.org/10.1002/smll.201602020
Ma S, Scaraggi M, Lin P, Yu B, Wang D, Dini D, Zhou F (2017) Nanohydrogel brushes for switchable underwater adhesion. J Phys Chem C 121:8452–8463. https://doi.org/10.1021/acs.jpcc.7b01305
Kwak D-H, Yoo J-B, Kim DJ (2010) Drug release behavior from nanoporous anodic aluminum oxide. J Nanosci Nanotechnol 10:345–348. https://doi.org/10.1166/jnn.2010.1531
Szuwarzyński M, Zaraska L, Sulka GD, Zapotoczny S (2013) Pulsatile releasing platform of nanocontainers equipped with thermally responsive polymeric nanovalves. Chem Mater 25:514–520. https://doi.org/10.1021/cm303930y
Hong C, Tang TT, Hung CY, Pan RP, Fang W (2010) Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications. Nanotechnology 21:285201. https://doi.org/10.1088/0957-4484/21/28/285201
Yilmaz B, Yüksel B, Orhan G, Aydin D, Utlu Z (2020) Synthesis and characterization of salt-impregnated anodic aluminum oxide composites for low-grade heat storage. Int J Miner Metall Mater 27:112–118. https://doi.org/10.1007/s12613-019-1890-x
Liu Y, Wang HH, Indacochea JE, Wang ML (2011) A colorimetric sensor based on anodized aluminum oxide (AAO) substrate for the detection of nitroaromatics. Sensors Actuators B Chem 160:1149–1158. https://doi.org/10.1016/j.snb.2011.09.040
Kim D-K, Kerman K, Hiep HM, Saito M, Yamamura S, Takamura Y, Kwon YS, Tamiya E (2008) Label-free optical detection of aptamer–protein interactions using gold-capped oxide nanostructures. Anal Biochem 379:1–7. https://doi.org/10.1016/j.ab.2008.04.029
Xu Z, Wan L, Huang X (2009) Functionalization methods for membrane surfaces. In: Surface engineering of polymer membranes. Springer, pp 64–79
Hou S, Harrell CC, Trofin L, Kohli P, Martin CR (2004) Layer-by-layer nanotube template synthesis. J Am Chem Soc 126:5674–5675. https://doi.org/10.1021/ja049537t
Zhao H, Liu L, Lei Y (2018) A mini review: functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage. Front Chem Sci Eng 12:481–493. https://doi.org/10.1007/s11705-018-1707-x
