The thermoelastic effect in rigor muscle of the frog

Springer Science and Business Media LLC - Tập 7 Số 1 - Trang 35-46 - 1986
Susan H. Gilbert1, Lincoln E. Ford2
1Department of Anatomical Sciences, SUNY at Stony Brook, Stony Brook, USA
2Department of Medicine, University of Chicago, Chicago, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aubert, X. (1956)Le Couplage Énergétique de la Contraction Musculaire. Brussels: Editions Arscia.

Aubert, X. &Gilbert, S. H. (1980) Variation in the isometric maintenance heat rate with muscle length near that of maximum tension in frog striated muscle.J. Physiol., Lond. 303, 1–8.

Chaplain, R. A. (1971) The importance of energy storage for the late phase of the muscle twitch.Acta biol. med. germ. 26, 1–9.

Chiu, Y. -L., Asayama, J. &Ford, L. E. (1982) A sensitive photoelectric force transducer with a resonant frequency of 6kHz.Am. J. Physiol. 243, C299–302.

Cooke, R. (1981) Stress does not alter the configuration of a domain of the myosin cross-bridge in rigor muscle fibres.Nature, Lond. 294, 570–1.

Curtin, N. A. &Woledge, R. C. (1978) Energy changes and muscular contraction.Physiol. Rev. 58, 690–761.

Flory, P. J. (1953)Principles of Polymer Chemistry. Ithaca: Cornell University Press.

Ford, L. E., Huxley, A. F. &Simmons, R. M. (1977) Tension responses to sudden length changes in stimulated frog muscle fibres near slack length.J. Physiol., Lond. 269, 441–575.

Gilbert, S. H. (1975)A re-examination of the thermoelastic effect in active muscle. Ph.D. Thesis, Emory University.

Gilbert, S. H. (1978) Tension and heat production during isometric contractions and shortening in the anterior byssus retractor muscle ofMytilus edulis.J. Physiol., Lond. 282, 7–20.

Gilbert, S. H. (1982) Time course of tension and heat production in response to small shortening ramps in frog skeletal muscle.J. Physiol., Lond. 326, 71–2p.

Gilbert, S. H. &Ford, L. E. (1983) Thermoelasticity in rigor muscle.Biophys. J. 41, 285a

Gilbert, S. H. &Matsumoto, Y. (1976) A re-examination of the thermoelastic effect in active striated muscle.J. gen. Physiol. 68, 81–94.

Hill, A. V. (1937) Methods of analysing the heat production of muscle.Proc. R. Soc. Ser. B. 124, 114–36.

Hill, A. V. (1952) A discussion on the thermodynamics of elasticity in biological tissues.Proc. R. Soc. Ser. B. 139, 464–527.

Hill, A. V. (1953) The ‘instantaneous’ elasticity of active muscle.Proc. R. Soc. Ser. B. 141, 161–78.

Huxley, A. F. &Simmons, R. M. (1973) Mechanical transients and the origin of muscular force.Cold Spring Harbor Symp. quant. Biol. 37, 669–80.

Huxley, H. E. &Brown, W. (1967) The low-angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor.J. molec. Biol. 30, 383–434.

Jewell, B. R. &Wilkie, D. R. (1958) An analysis of the mechanical components in frog's striated muscle.J. Physiol., Lond. 143, 515–40.

Naylor, G. R. S. &Podolsky, R. J. (1981) X-ray diffraction of strained muscle fibres in rigor.Proc. natn. Acad. Sci. U.S.A. 78, 5559–63.

Woledge, R. C. (1961) The thermoelastic effect of change of tension in active muscle.J. Physiol., Lond. 155, 187–208.

Woledge, R. C. (1963) Heat production and energy liberation in the early part of a muscle contraction.J. Physiol., Lond. 166, 211–24.