The thermoelastic contact problem of one-dimensional hexagonal quasicrystal layer with interfacial imperfections

Archive of Applied Mechanics - Tập 93 Số 2 - Trang 707-729 - 2023
Lili Ma1, Shenghu Ding2, Chen Qimao3, Fei Kang3, Rukai Huang2, Xing Li2, Xin Zhang3
1Ningxia University > > > >
2School of Mathematics and Statistics, Ningxia University, Yinchuan, China
3School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dubois, J.M.: New prospects from potential applications of quasicrystal line materials. Mater. Sci. Eng. 294–296, 4–9 (2000)

Dubois, J.M.: So useful, those quasicrystals. Isr. J. Chem. 51(11–12), 1168–1175 (2011)

Bendersky, L.A., Burton, B.: A warm welcome to quasicrystals. J. Phase Equilib. Diffus. 33(2), 83–84 (2012)

Li, X.Y., Wang, T., et al.: Fundamental thermo-electro-elastic solutions for 1D hexagonal QC. J. Appl. Math. Mech. 95(5), 457–468 (2015)

Li, X.Y., Li, P.D., Zheng, R.F.: Thermo-elastic Green’s functions for an infinite bi-material of one-dimensional hexagonal quasicrystals. Phys. Lett. A 377(8), 637–642 (2013)

Li, X.Y., Li, P.D.: Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Phys. Lett. A A376, 2004–2009 (2012)

Li, P.D., Liu, Y.J., Zhang, H.: Indentation on a half-infinite one-dimensional hexagonal quasi-crystal space by a rigid flat-ended cylindrical indenter with uniform heat flux or temperature. Mech. Mater. 131, 33–46 (2019)

Ma, L.L., Zhang, X., et al.: Steady state thermoelastic contact problem of one-dimensional hexagonal quasicrystals. J. Therm. Stresses 45(3), 214–233 (2022)

Yang, L.Z., Zhang, L.L., Song, F., Gao, Y.: General solutions for three-dimensional thermoelasticity of two-dimensional hexagonal quasicrystals and an application. J. Therm. Stresses 37, 363–379 (2014)

Zhao, M.H., Zhang, X., et al.: Thermal fracture analysis of a two-dimensional decagonal quasicrystal coating structure with interface cracks. Mech. Adv. Mater. Struct. 66, 1–16 (2022)

Wang, X., Zhang, J.Q.: A steady line heat source in a decagonal quasicrystalline half-space. Mech. Res. Commun. 32, 420–428 (2005)

Zhao, M.H., et al.: Analysis of interface cracks in one-dimensional hexagonal quasi-crystal coating under in-plane loads. Eng. Fract. Mech. 243, 107534 (2021)

Peng, Y.Z., Fan, T.Y.: Crack and indentation problems for one-dimensional hexagonal quasicrystals. Eur. Phys. J. B 21(1), 39–44 (2001)

Zhou, W.M., Fan, T.Y., Yin, S.Y.: Axisymmetric contact problem of cubic quasicrystalline materials. Acta Mech. Solida Sin. 15, 68–74 (2002)

Gao, Y., Ricoeur, A.: Three-dimensional Green’s function for two-dimensional quasicrystal bimaterials. Proc. R. Soc. A 467(2133), 2622–2642 (2011)

Gao, Y., Zhao, B.S.: General solutions of three-dimensional problems for two-dimensional quasicrystals. Appl. Math. Model. 33, 3382–3391 (2009)

Wu, Y.F., Chen, W.Q., Li, X.Y.: Indentation on one-dimensional hexagonal quasicrystals: general theory and complete exact solutions. Philos. Mag. 93, 858–882 (2013)

Li, X.Y., Wu, F., Wu, Y.F., Chen, W.Q.: Indentation on two-dimensional hexagonal quasicrystals. Mech. Mater. 76, 121–136 (2014)

Zhao, X.F., Li, X., Ding, S.H.: Two kinds of contact problems in three-dimensional icosahedral quasicrystals. Appl. Math. Mech. Engl. Ed. 12, 1569–1580 (2015)

Zhao, X.F., Li, X., Ding, S.H.: Two kinds of contact problems in dodecagonal quasicrystals of point group 12 mm. Acta Mech. Solida Sin. 29, 167–177 (2016)

Zhang, Z.G., Ding, S.H., Li, X.: Two kinds of contact problems for two-dimensional hexagonal quasicrystals. Mech. Res. Commun. 113, 103683 (2021)

Huang, R.K., Ding, S.H., Zhang, X., Li, X.: Frictional contact problem of a rigid charged indenter on two dimensional hexagonal piezoelectric quasicrystals coating. Philos. Mag. 101(19), 2123–2156 (2021)

Huang, R.K., et al.: Sliding frictional contact of one-dimensional hexagonal piezoelectric quasicrystals coating on piezoelectric substrate with imperfect interface. Int. J. Solids Struct. 239–240, 111423 (2022)

Huang, R.K., et al.: Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer. Arch. Appl. Mech. 91, 4693–4716 (2021)

Zhang, X., Wang, Q.J.: Thermoelastic contact of layered materials with interfacial imperfection. Int. J. Mech. Sci. 186, 105904 (2020)

Li, D., Wang, Z., Yu, H., Wang, Q.: Elastic fields caused by eigenstrains in two joined half-spaces with an interface of coupled imperfections: dislocation-like and force-like conditions. Int. J. Eng. Sci. 126, 22–52 (2018)

Wang, Z., Yu, H., Wang, Q.: Layer-substrate system with an imperfectly bonded interface: coupled dislocation-like and force-like conditions. Int. J. Solids Struct. 122, 91–109 (2017)

He, T., Wang, Z., Wu, J.: Effect of imperfect coating on the elastohydrodynamic lubrication: dislocation-like and force-like coating-substrate interfaces. Tribol. Int. 143, 106098 (2020)

Grushko, B., Holland-Moritz, D., Wittmann, R., Wilde, G.: Transition between periodic and quasiperiodic structures in Al–Ni–Co. J. Alloys Compd. 280, 215–230 (1998)

Hiraga, K., Ohsuna, T., Sun, W., Sugiyama, K.: The structural characteristics of Al–Co–Ni decagonal quasicrystals and crystalline approximants. J. Alloys Compd. 342, 110–114 (2002)

Barrow, J.A., Lemieux, M.C., Cook, B.A., et al.: Micro-surface and bulk thermal behavior of a single-grain decagonal Al–Ni–Co quasicrystal. J. Non-Cryst. Solids 334–335, 312–316 (2004)

Burkardt, S., Erbudak, M., et al.: High-temperature surface oxidation of the decagonal Al–Co–Ni quasicrystal. Surf. Sci. 603, 867–872 (2009)

Aylanna, P.M., et al.: Additive manufacturing of a quasicrystal-forming Al95Fe2Cr2Ti1 alloy with remarkable high-temperature strength and ductility. Addit. Manuf. 41, 10960 (2021)

Stagno, V., Bindi, L., et al.: Icosahedral AlCuFe quasicrystal at high pressure and temperature and its implications for the stability of icosahedrite. Sci. Rep. 4, 5869 (2014)

Sato, K., Baier, F., et al.: Observation of high-temperature thermal vacancies in Al70Pd21Mn9 quasicrystals. Phys. Rev. B Condens. Matter Mater. Phys. 68, 21 (2003)

Ye, F., Sprengel, W., et al.: High temperature vacancy studies of icosahedral Zn65Mg25Er10 quasicrystal. J. Phys. Condens. Matter 16(9), 1531–1537 (2004)

Fikar, J., et al.: High temperature plastic behaviour of icosahedral AlCuFe quasicrystals. MRS Online Proc. Libr. 643, 1 (2000)

Zhang, X., et al.: A new approach for analyzing the temperature rise and heat partition at the interface of coated tool tip-sheet incremental forming systems. Int. J. Heat Mass Transf. 129, 1172–1183 (2019)

Wang, T.J., et al.: Three-dimensional thermoelastic contact model of coated solids with frictional heat partition considered. Coatings 8, 470 (2018)

Zhang, X., Wang, Z., Shen, H., et al.: Frictional contact involving a multiferroic thin film subjected to surface magneto-electro-elastic effects. Int. J. Mech. Sci. 131, 633–648 (2017)

Zhang, X., Wang, Z.J., Shen, H.M., Wang, Q.: An efficient model for the frictional contact between two multiferroic bodies. Int. J. Solids Struct. 130, 133–152 (2018)

Zhang, X., Wang, Q.: A SAM-FFT based model for 3D steady-state elastodynamic frictional contacts. Int. J. Solids Struct. 170, 53–67 (2019)

Zhang, H.B., Wang, W.Z., et al.: Semi-analytical solution of three-dimensional steady state thermoelastic contact problem of multilayered material under friction heating. Int. J. Therm. Sci. 127, 384–399 (2018)

Liu, S., Wang, Q., Liu, G.: A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 243, 101–111 (2000)

Liu, S., Wang, Q.: Studying contact stress fields caused by surface tractions with a discrete convolution and fast Fourier transform algorithm. J. Tribol. 124(1), 36–45 (2002)

Wang, Z., Yu, C., Wang, Q.: An efficient method for solving three-dimensional fretting contact problems involving multilayered or functionally graded materials. Int. J. Solids Struct. 66, 46–61 (2015)

Wang, Z.J., Wang, W.Z., Wang, H., et al.: Partial slip contact analysis on three-dimensional elastic layered half space. ASME J. Tribol. 132(2), 021403 (2010)

Chen, W.Q., Ding, H.J.: Three-dimensional general solution of transversely isotropic thermoelasticity and the potential theory method. Acta. Mech. Sin. 35, 5 (2003)

Ding, H., Chen, W., Zhang, L.: Elasticity of Transversely Isotropic Materials. Springer (2006)

Giannakopoulos, A.E., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47(7), 2153–2164 (1999)

Hou, P.F., et al.: Green’s functions for semi-infifinite transversely isotropic thermoelastic materials. J. Appl. Math. Mech. 88(1), 33–41 (2008)