The theory of the exponential differential equations of semiabelian varieties

Selecta Mathematica - Tập 15 Số 3 - Trang 445-486 - 2009
Kirby, Jonathan1
1Mathematical Institute, University of Oxford, Oxford, UK

Tóm tắt

The complete first-order theories of the exponential differential equations of semiabelian varieties are given. It is shown that these theories also arise from an amalgamation-with-predimension construction in the style of Hrushovski. The theories include necessary and sufficient conditions for a system of equations to have a solution. The necessary conditions generalize Ax’s differential fields version of Schanuel’s conjecture to semiabelian varieties. There is a purely algebraic corollary, the “Weak CIT” for semiabelian varieties, which concerns the intersections of algebraic subgroups with algebraic varieties.

Tài liệu tham khảo

citation_journal_title=Ann. Math.; citation_title=On Schanuel’s conjectures; citation_author=J. Ax; citation_volume=93; citation_issue=2; citation_publication_date=1971; citation_pages=252-268; citation_doi=10.2307/1970774; citation_id=CR1 citation_journal_title=Am. J. Math.; citation_title=Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic groups; citation_author=J. Ax; citation_volume=94; citation_publication_date=1972; citation_pages=1195-1204; citation_doi=10.2307/2373569; citation_id=CR2 Bertrand, D.: Schanuel’s conjecture for non-isoconstant elliptic curves over function fields. In: Model theory with applications to algebra and analysis. vol.1. London Mathematical Society, vol. 349. Lecture Note Series, pp. 41–62. Cambridge University Press, Cambridge (2008) citation_journal_title=Int. Math. Res. Notes IMRN; citation_title=Anomalous subvarieties—structure theorems and applications; citation_author=E. Bombieri, D. Masser, U. Zannier; citation_volume=19; citation_issue=57; citation_publication_date=2007; citation_pages=33; citation_id=CR4 Bertrand, D., Pillay, A.: A Lindemann–Weierstrass theorem for semiabelian varieties over function fields (2008, preprint) Chevalley, C.: Théorie des groupes de Lie. Tome II. Groupes algébriques. Actualités Sci. Ind. no. 1152. Hermann & Cie., Paris (1951) Crampin, C.: Reducts of differentially closed fields to fields with a relation for exponentiation. DPhil Thesis, University of Oxford (2006) citation_journal_title=Contemp. Math.; citation_title=A categorical theorem on universal objects and its application in abelian group theory and computer science; citation_author=M. Droste, R. Göbel; citation_volume=131; citation_issue=Part 3; citation_publication_date=1992; citation_pages=49-74; citation_id=CR8 Eisenbud, D.: Commutative algebra. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995) Hodges, W.: Model theory. Encyclopedia of Mathematics and its Applications, vol. 42. Cambridge University Press, Cambridge (1993) citation_journal_title=Israel J. Math.; citation_title=Strongly minimal expansions of algebraically closed fields; citation_author=E. Hrushovski; citation_volume=79; citation_issue=2–3; citation_publication_date=1992; citation_pages=129-151; citation_doi=10.1007/BF02808211; citation_id=CR11 citation_journal_title=Ann. Pure Appl. Logic; citation_title=A new strongly minimal set; citation_author=E. Hrushovski; citation_volume=62; citation_issue=2; citation_publication_date=1993; citation_pages=147-166; citation_doi=10.1016/0168-0072(93)90171-9; citation_id=CR12 citation_journal_title=J. Symb. Log.; citation_title=A Schanuel condition for Weierstrass equations; citation_author=J. Kirby; citation_volume=70; citation_issue=2; citation_publication_date=2005; citation_pages=631-638; citation_id=CR13 Kirby, J.: The theory of exponential differential equations. DPhil Thesis, University of Oxford (2006) Marker, D.: Manin kernels. In: Connections between model theory and algebraic and analytic geometry. Quad. Math., vol. 6, pp. 1–21. Department of Mathematics, Seconda Univ. Napoli, Caserta (2000) Marker, D.: Model theory: an introduction. Graduate texts in Mathematics, vol. 217. Springer, New York (2002) citation_journal_title=J. Symb. Log.; citation_title=Differential forms in the model theory of differential fields; citation_author=D. Pierce; citation_volume=68; citation_issue=3; citation_publication_date=2003; citation_pages=923-945; citation_doi=10.2178/jsl/1058448448; citation_id=CR17 Pillay, A.: Model theory of algebraically closed fields. In: Model theory and algebraic geometry. Lecture Notes in Mathematics, vol. 1696, pp. 61–84. Springer, Berlin (1998) citation_journal_title=Port. Math.; citation_title=A note on derivations and differentials on algebraic varieties; citation_author=M. Rosenlicht; citation_volume=16; citation_publication_date=1957; citation_pages=43-55; citation_id=CR19 Serre, J.-P.: Algebraic groups and class fields. Graduate texts in mathematics, vol. 117. Springer, New York (1988) citation_title=Basic algebraic geometry, vol. 1; citation_publication_date=1994; citation_id=CR21; citation_author=I.R. Shafarevich; citation_publisher=Springer citation_journal_title=J. Lond. Math. Soc. (2); citation_title=Exponential sums equations and the Schanuel conjecture; citation_author=B. Zilber; citation_volume=65; citation_issue=1; citation_publication_date=2002; citation_pages=27-44; citation_doi=10.1112/S0024610701002861; citation_id=CR22 citation_journal_title=J. Symb. Log.; citation_title=Bi-coloured fields on the complex numbers; citation_author=B. Zilber; citation_volume=69; citation_issue=4; citation_publication_date=2004; citation_pages=1171-1186; citation_doi=10.2178/jsl/1102022217; citation_id=CR23 citation_journal_title=Ann. Pure Appl. Log.; citation_title=Pseudo-exponentiation on algebraically closed fields of characteristic zero; citation_author=B. Zilber; citation_volume=132; citation_issue=1; citation_publication_date=2005; citation_pages=67-95; citation_doi=10.1016/j.apal.2004.07.001; citation_id=CR24