The theory of ordinal length
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atiyah, M., Macdonald, G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading (1969)
Bass, H.: Descending chains and the Krull ordinal of commutative Noetherian rings. J. Pure Appl. Algebra 1(4), 347–360 (1971)
Bayer, D., Mumford, D.: What can be computed in algebraic geometry? Computational algebraic geometry and commutative algebra. Cortona: Symposium on Mathematics. XXXIV, vol. 1993, pp. 1–48. Cambridge University Press, Cambridge (1991)
Brookfield, G.: A Krull–Schmidt theorem for Noetherian modules. J. Algebra 251(1), 70–79 (2002) (MR 1900275 (2003b:16005))
Brookfield, G.: The length of Noetherian modules. Commun. Algebra 30(7), 3177–3204 (2002) (MR 1914992 (2003f:16002))
Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge University Press, Cambridge (1993)
Chan, C.-Y.: Filtrations of modules, the Chow group, and the Grothendieck group. J. Algebra 219(1), 330–344 (1999)
Dress, A.: A new algebraic criterion for shellability. Beiträge Algebra Geom. 34(1), 45–55 (1993)
Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. In: Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York (1995)
Gabriel, P., Rentschler, R.: Sur la dimension des anneaux et ensembles ordonnés. C. R. Acad. Sci. Paris 265, A712–A715 (1967)
Garavaglia, S.: Decomposition of totally transcendental modules. J. Symb. Logic 45(1), 155–164 (1980)
Gordon, R., Robson, J.C.: Krull Dimension. American Mathematical Society, Providence, RI (1973) (Memoirs of the American Mathematical Society, No. 133, MR 0352177 (50 #4664))
Hartshorne, R.: Connectedness of the Hilbert scheme. Inst. Hautes Études Sci. Publ. Math. 29, 5–48 (1966)
Herzog, J., Popescu, D.: Finite filtrations of modules and shellable multicomplexes. Manuscr. Math. 121(3), 385–410 (2006)
Jategaonkar, A.V.: Jacobson’s conjecture and modules over fully bounded Noetherian rings. J. Algebra 30, 103–121 (1974)
Knuth, D.E.: Surreal Numbers. Addison-Wesley Publishing Co., Reading (1974)
Kondratieva, M.V., Levin, A.B., Mikhalev, A.V., Pankratiev, E.V.: Differential and difference dimension polynomials. In: Mathematics and Its Applications, vol. 461. Kluwer Academic Publishers, Dordrecht (1999) (MR 1676955 (2001c:12006))
Krause, G.: Descending chains of submodules and the Krull-dimension of Noetherian modules. J. Pure Appl. Algebra 3, 385–397 (1973) (MR 0338071 (49 #2838))
Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986)
McConnell, J.C., Robson, J.C.: Noncommutative Noetherian rings, revised edn. In: Graduate Studies in Mathematics, vol. 30. American Mathematical Society, Providence, RI (2001) (with the cooperation of L. W. Small)
Năstăsescu, C., Van Oystaeyen, F.: Mathematics and Its Applications. Dimensions of ring theory, vol. 36. D. Reidel Publishing Co., Dordrecht (1987)
Sabbagh, G., Eklof, P.: Definability problems for modules and rings. J. Symb. Logic 36, 623–649 (1971) (MR 0313050 (47 #1605))
Schenzel, P.: On the dimension filtration and Cohen–Macaulay filtered modules, commutative algebra and algebraic geometry (Ferrara). In: Lecture Notes in Pure and Applied Mathematics, vol. 206, pp. 245–264. Dekker, New York (1999)
Schoutens, H.: The use of ultraproducts in commutative algebra. In: Lecture Notes in Mathematics, vol. 1999. Springer-Verlag, New York (2010)
Schoutens, H.: Absolute bounds on the number of generators of Cohen–Macaulay ideals of height at most two. Bull. Soc. Math. Belg. 13, 719–732 (2006)
Schoutens, H.: Binary Modules and Their Endomorphisms. arXiv:1212.2171 (2012a)
Schoutens, H.: Condense Modules and the Goldie Dimension (2012b, preprint)
Simmons, H.: The Gabriel dimension and Cantor–Bendixson rank of a ring. Bull. Lond. Math. Soc. 20(1), 16–22 (1988)
Sturmfels, B., Trung, N.V., Vogel, W.: Bounds on degrees of projective schemes. Math. Ann. 302(3), 417–432 (1995)