The theoretical study of Rh single atom catalysts decorated C3N monolayer with N vacancy for CO oxidations

Applied Physics A Solids and Surfaces - Tập 129 - Trang 1-9 - 2023
Yanxing Zhang1, Xinyang Gao1
1School of Physics, Henan Normal University, Xinxiang, People’s Republic of China

Tóm tắt

In this work, the single Rh atom anchored by N vacancy of C3N monolayer for CO oxidations has been studied by using first-principles calculations. The stability for a single Rh atom in N vacancy of C3N monolayer is detailed investigated. The sizeable binding energy and diffusion barrier of the Rh atom in the N vacancy and the ab initial molecule dynamic simulations at 400 K all verify that the Rh is stable at the N vacancy of the C3N monolayer. We also have examined the bi-molecule Eley–Rideal (ER) and Langmuir–Hinshelwood (LH) and the tri-molecule LH mechanisms on the Rh @ C3N. It is found that the barriers for the rate-limiting step for bi-molecule ER and LH are so significant (1.35, 1.15 eV), while for the tri-molecule LH mechanism, the barrier of the rate-limiting step is only 0.49 eV, which means the tri-molecule LH mechanism is more likely to occur at room temperature on the Rh @ C3N. Thus, our results will shed light on the future design for low-temperature CO oxidation using single-atom catalysts.

Tài liệu tham khảo

R. Prasad, P. Singh, Catal. Rev. 54, 224 (2012). https://doi.org/10.1080/01614940.2012.648494 V.M. Vishnyakov, Vacuum 80, 1053 (2006). https://doi.org/10.1016/j.vacuum.2006.03.029 N.K. Soliman, J. Market. Res. 8, 2395 (2019). https://doi.org/10.1016/j.jmrt.2018.12.012 H.-J. Freund, G. Meijer, M. Scheffler, R. Schlögl, M. Wolf, Angew. Chem. Int. Ed. 50, 10064 (2011). https://doi.org/10.1002/anie.201101378 Y.J. Mergler, A. van Aalst, J. van Delft, B.E. Nieuwenhuys, Appl. Catal. B 10, 245 (1996). https://doi.org/10.1016/S0926-3373(96)00017-3 X.-Q. Gong, Z.-P. Liu, R. Raval, P. Hu, J. Am. Chem. Soc. 126, 8 (2004). https://doi.org/10.1021/ja030392k C. Dupont, Y. Jugnet, D. Loffreda, J. Am. Chem. Soc. 128, 9129 (2006). https://doi.org/10.1021/ja061303h M.S. Chen, Y. Cai, Z. Yan, K.K. Gath, S. Axnanda, D.W. Goodman, Surf. Sci. 601, 5326 (2007). https://doi.org/10.1016/j.susc.2007.08.019 J. Rogal, K. Reuter, M. Scheffler, Phys. Rev. B 75, 205433 (2007). https://doi.org/10.1103/PhysRevB.75.205433 B.L.M. Hendriksen, S.C. Bobaru, J.W.M. Frenken, Surf. Sci. 552, 229 (2004). https://doi.org/10.1016/j.susc.2004.01.025 X. Bokhimi, R. Zanella, C. Angeles-Chavez, J. Phys. Chem. C 114, 14101 (2010). https://doi.org/10.1021/jp103053e G. Xu, R. Wang, Y. Ding, Z. Lu, D. Ma, Z. Yang, J. Phys. Chem. C 122, 23481 (2018). https://doi.org/10.1021/acs.jpcc.8b06739 A. Böttcher, H. Niehus, S. Schwegmann, H. Over, G. Ertl, J. Phys. Chem. B 101, 11185 (1997). https://doi.org/10.1021/jp9726899 J. Li, Z. Liu, D.A. Cullen et al., ACS Catal. 9, 11088 (2019). https://doi.org/10.1021/acscatal.9b03113 N. Lopez, T.V.W. Janssens, B.S. Clausen et al., J. Catal. 223, 232 (2004). https://doi.org/10.1016/j.jcat.2004.01.001 N. Lopez, J.K. Nørskov, J. Am. Chem. Soc. 124, 11262 (2002). https://doi.org/10.1021/ja026998a B.K. Min, A.R. Alemozafar, D. Pinnaduwage, X. Deng, C.M. Friend, J. Phys. Chem. B 110, 19833 (2006). https://doi.org/10.1021/jp0616213 A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007). https://doi.org/10.1038/nmat1849 K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, J. Mater. Chem. C 5, 11992 (2017). https://doi.org/10.1039/C7TC04300G Y.-S. Jun, W.H. Hong, M. Antonietti, A. Thomas, Adv. Mater. 21, 4270 (2009). https://doi.org/10.1002/adma.200803500 J. Kröger, A. Jiménez-Solano, G. Savasci et al., Adv. Func. Mater. 31, 2102468 (2021). https://doi.org/10.1002/adfm.202102468 M. Aggarwal, S. Basu, N.P. Shetti et al., Chem. Eng. J. 425, 131402 (2021). https://doi.org/10.1016/j.cej.2021.131402 Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Appl. Catal. B 163, 135 (2015). https://doi.org/10.1016/j.apcatb.2014.07.053 S. Yang, W. Li, C. Ye et al., Adv. Mater. 29, 1605625 (2017). https://doi.org/10.1002/adma.201605625 J. Xu, J. Mahmood, Y. Dou et al., Adv. Mater. 29, 1702007 (2017). https://doi.org/10.1002/adma.201702007 Z.-Z. Lin, Carbon 108, 343 (2016). https://doi.org/10.1016/j.carbon.2016.07.040 Y. Tang, Z. Liu, X. Dai et al., Appl. Surf. Sci. 308, 402 (2014). https://doi.org/10.1016/j.apsusc.2014.04.189 Y. Tang, W. Chen, Z. Shen, S. Chang, M. Zhao, X. Dai, Carbon 111, 448 (2017). https://doi.org/10.1016/j.carbon.2016.10.028 Y. Tang, M. Zhang, Z. Shen, J. Zhou, H. Chai, X. Dai, New J. Chem. 42, 3770 (2018). https://doi.org/10.1039/C7NJ04877G B. Qiao, A. Wang, X. Yang et al., Nat. Chem. 3, 634 (2011). https://doi.org/10.1038/nchem.1095 X. Li, W. Bi, L. Zhang et al., Adv. Mater. 28, 2427 (2016). https://doi.org/10.1002/adma.201505281 F. Li, Y. Li, X.C. Zeng, Z. Chen, ACS Catal. 5, 544 (2015). https://doi.org/10.1021/cs501790v Y. Tang, Y.-G. Wang, J. Li, J. Phys. Chem. C 121, 11281 (2017). https://doi.org/10.1021/acs.jpcc.7b00313 X. Zhang, J. Lei, D. Wu, X. Zhao, Y. Jing, Z. Zhou, J. Mater. Chem. A 4, 4871 (2016). https://doi.org/10.1039/C6TA00554C X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 46, 1740 (2013). https://doi.org/10.1021/ar300361m Y. Wang, D. Wu, P. Lv et al., Nanoscale 14, 10862 (2022). https://doi.org/10.1039/D2NR02813A D. Wu, P. Lv, J. Wu et al., J. Mater. Chem. A 11, 1817 (2023). https://doi.org/10.1039/D2TA08027C D. Wu, J. Wu, P. Lv, H. Li, K. Chu, D. Ma, Small Struct. (2023). https://doi.org/10.1002/sstr.202200358 Y. Zhang, J. Zhang, N. Zhang et al., Phys. Rev. B 107, 054101 (2023). https://doi.org/10.1103/PhysRevB.107.054101 H. Cui, K. Zheng, Y. Zhang, H. Ye, X. Chen, IEEE Electron. Device Lett. 39, 284 (2018). https://doi.org/10.1109/LED.2017.2787788 D. Ma, J. Zhang, X. Li et al., Sens. Actuators B Chem. 266, 664 (2018). https://doi.org/10.1016/j.snb.2018.03.159 H. Cui, C. Yan, P. Jia, W. Cao, Appl. Surface Sci. 512, 145759 (2020). https://doi.org/10.1016/j.apsusc.2020.145759 X. Sun, J. Lin, H. Guan et al., Appl. Catal. B 226, 575 (2018). https://doi.org/10.1016/j.apcatb.2018.01.011 H. Jeong, G. Lee, B.-S. Kim, J. Bae, J.W. Han, H. Lee, J. Am. Chem. Soc. 140, 9558 (2018). https://doi.org/10.1021/jacs.8b04613 P.L. Tan, Y.L. Leung, S.Y. Lai, C.T. Au, Appl. Catal. A 228, 115 (2002). https://doi.org/10.1016/S0926-860X(01)00955-3 K. Ueda, M. Tsuji, J. Ohyama, A. Satsuma, ACS Catal. 9, 2866 (2019). https://doi.org/10.1021/acscatal.9b00526 A. Wang, J. Li, TJNRC Zhang 2, 65 (2018) F. Chen, X. Jiang, L. Zhang, R. Lang, BJCJoC Qiao 39, 893 (2018) M.J. Hülsey, B. Zhang, Z. Ma et al., Nat Commun 10, 1330 (2019) S. Luo, L. Zhang, Y. Liao et al., Adv. Mater. 33, 2008508 (2021) S. Lin, X. Ye, R.S. Johnson, H. Guo, J. Phys. Chem. C 117, 17319 (2013). https://doi.org/10.1021/jp4055445 M. Gao, A. Lyalin, T. Taketsugu, Int. J. Quantum Chem. 113, 443 (2013). https://doi.org/10.1002/qua.24066 H. Cui, Z. Liu, PJASS Jia 537, 147881 (2021) B. Delley, J. Chem. Phys. 113, 7756 (2000). https://doi.org/10.1063/1.1316015 S. Grimme, J. Comput. Chem. 27, 1787 (2006). https://doi.org/10.1002/jcc.20495 M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999). https://doi.org/10.1063/1.478401 J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865 B. Delley, Phys. Rev. B 66, 155125 (2002). https://doi.org/10.1103/PhysRevB.66.155125 T.A. Halgren, W.N. Lipscomb, Chem. Phys. Lett. 49, 225 (1977). https://doi.org/10.1016/0009-2614(77)80574-5 C. Peng, H. Bernhard Schlegel, J. Comput. Chem. 33, 449 (1993). https://doi.org/10.1002/ijch.199300051 N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, J. Andzelm, Comput. Mater. Sci. 28, 250 (2003). https://doi.org/10.1016/S0927-0256(03)00111-3 Q. Jiang, J. Zhang, Z. Ao, H. Huang, H. He, Y. Wu, Front. Chem. (2018). https://doi.org/10.3389/fchem.2018.00187 Y. Zhou, Y. Song, F. Yang, Y. Liu, J. Chang, BJMC Teng 541, 113077 (2023) J.-X. Liu, Z. Liu, I.A. Filot et al., Catal. Sci. Technol. 7, 75 (2017) S. Lin, X. Ye, R.S. Johnson, H. Guo, J. Phys. Chem. C. 117, 17319 (2013)