The technological basis for adaptive ion beam therapy at MedAustron: Status and outlook

Zeitschrift für Medizinische Physik - Tập 28 - Trang 196-210 - 2018
Markus Stock1, Dietmar Georg2,3, Alexander Ableitinger1, Andrea Zechner1, Alexander Utz1, Marta Mumot1, Gabriele Kragl1, Johannes Hopfgartner1, Joanna Gora1, Till Böhlen1, Loïc Grevillot1, Peter Kuess2,3, Phil Steininger4,5, Heinz Deutschmann4,5, Stanislav Vatnitsky1
1Division of Medical Physics, EBG MedAustron GmbH, Wiener Neustadt, Austria
2Department of Radiation Oncology, Medical University of Vienna/AKH, Vienna, Austria
3Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
4Institute for Research and Development on Advanced Radiation Technologies (radART), Paracelsus Medical University (PMU), Strubergasse 16, 5020 Salzburg, Austria
5medPhoton GmbH, Strubergasse 16, 5020 Salzburg, Austria

Tài liệu tham khảo

Hoffmann, 2016, Adaptation is mandatory for intensity modulated proton therapy of advanced lung cancer to ensure target coverage, Radiother Oncol, 122, 400, 10.1016/j.radonc.2016.12.018 Flohr, 2016, 40 Jahre Computertomographie – Rückblick und aktuell Entwicklungen, Z Med Phys, 26, 195, 10.1016/j.zemedi.2016.06.001 Van Elmpt, 2016, Dual energy CT in radiotherapy: current applications and future outlook, Radiother Oncol, 119, 137, 10.1016/j.radonc.2016.02.026 Slater, 1998, Conformal proton therapy for prostate carcinoma, Int J Radiat Oncol Biol Phys, 42, 299, 10.1016/S0360-3016(98)00225-9 Zechner, 2016, Development and first use of a novel cylindrical ball bearing phantom for 9-DOF geometric calibrations of flat panel imaging devices used in image-guided ion beam therapy, Phys Med Biol, 61, N592, 10.1088/0031-9155/61/22/N592 Seppenwoolde, 2016, Impact of organ shape variations on margin concepts for cervix cancer ART, Radiother Oncol, 120, 526, 10.1016/j.radonc.2016.08.004 Li, 2015, Robust optimization in intensity-modulated proton therapy to account for anatomy changes in lung cancer patients, Radiother Oncol, 114, 367, 10.1016/j.radonc.2015.01.017 Hamming-Vrieze, 2017, Analysis of GTV reduction during radiotherapy for oropharyngeal cancer: implications for adaptive radiotherapy, Radiother Oncol, 122, 224, 10.1016/j.radonc.2016.10.012 Bryant, 2000 Rossi, 2011, The status of CNAO, Eur Phys J Plus, 126, 1, 10.1140/epjp/i2011-11078-8 ICRU Report Committee IR, 2007, ICRU REPORT 78 prescribing, recording, and reporting proton-beam therapy, J ICRU Giordanengo, 2015, The CNAO dose delivery system for modulated scanning ion beam radiotherapy, Med Phys, 42, 263, 10.1118/1.4903276 Grevillot, 2015, Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy, Phys Med Biol, 60, 7985, 10.1088/0031-9155/60/20/7985 Nairz, 2013, Accuracy of robotic patient positioners used in ion beam therapy, Radiat Oncol, 8, 124, 10.1186/1748-717X-8-124 Ableitinger, 2017, Commissioning of a robotic patient positioning system equipped with an integrated tracking system, Radiother Oncol, 123, S958.16 Utz, 2017, Quality assurance of a novel table mounted imaging device integrated in a patient positioning system, Radiother Oncol, 123, S261, 10.1016/S0167-8140(17)30931-3 Keuschnigg, 2017, Flat-field correction pipeline for a cone-beam computed tomography imaging device with independently movable source and detector, Med Phys, 44, 132, 10.1002/mp.12033 Vargas, 2007, Rectal dose-volume differences using proton radiotherapy and a rectal balloon or water alone for the treatment of prostate cancer, Int J Radiat Oncol Biol Phys, 69, 1110, 10.1016/j.ijrobp.2007.04.075 Steiner, 2013, Imaging dose assessment for IGRT in particle beam therapy, Radiother Oncol, 109, 409, 10.1016/j.radonc.2013.09.007 Park, 2015, Proton dose calculation on scatter-corrected CBCT image: feasibility study for adaptive proton therapy, Med Phys, 42, 4449, 10.1118/1.4923179 Kurz, 2016, Investigating deformable image registration and scatter correction for CBCT-based dose calculation in adaptive IMPT, Med Phys, 43, 5635, 10.1118/1.4962933 Arai, 2016, Feasibility of CBCT-based proton dose calculation using a histogram-matching algorithm in proton beam therapy, Phys Med, 33, 68, 10.1016/j.ejmp.2016.12.006 Stock, 2012, IGRT induced dose burden for a variety of imaging protocols at two different anatomical sites, Radiother Oncol, 102, 355, 10.1016/j.radonc.2011.10.005 Deutschmann, 2012, First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter- and intrafractional rotations of the prostate, Int J Radiat Oncol Biol Phys, 83, 1624, 10.1016/j.ijrobp.2011.10.009 Sorriaux, 2017, Experimental assessment of proton dose calculation accuracy in inhomogeneous media, Phys Med Eur J Med Phys, 38, 10 Farace, 2017, Supine craniospinal irradiation in pediatric patients by proton pencil beam scanning, Radiother Oncol, 123, 112, 10.1016/j.radonc.2017.02.008 Bäumer, 2017, Dosimetry intercomparison of four German proton therapy institutions employing spot scanning, Z Med Phys, 10.1016/j.zemedi.2016.06.007 Meier, 2015, Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy, Phys Med Biol, 60, 2819, 10.1088/0031-9155/60/7/2819 Li, 2013, Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance, Med Phys, 40, 21703, 10.1118/1.4773312 Furtado, 2013, Real-time 2D/3D registration using kV–MV image pairs for tumor motion tracking in image guided radiotherapy, Acta Oncol, 52, 1464, 10.3109/0284186X.2013.814152 Juneja, 2016, Kilovoltage intrafraction monitoring for real-time image guided adaptive radiotherapy reduces total dose for lung SABR, Radiother Oncol, 121, 15, 10.1016/j.radonc.2016.08.030 Kim, 2017, Water equivalent path length calculations using scatter-corrected head and neck CBCT images to evaluate patients for adaptive proton therapy, Phys Med Biol, 62, 59, 10.1088/1361-6560/62/1/59 Wang, 2016, Quantitative assessment of anatomical change using a virtual proton depth radiograph for adaptive head and neck proton therapy, J Appl Clin Med Phys, 17, 427, 10.1120/jacmp.v17i2.5819 Landry, 2014, Phantom based evaluation of CT to CBCT image registration for proton therapy dose recalculation, Phys Med Biol, 60, 595, 10.1088/0031-9155/60/2/595 Veiga, 2016, First clinical investigation of cone beam computed tomography and deformable registration for adaptive proton therapy for lung cancer, Int J Radiat Oncol Biol Phys, 95, 549, 10.1016/j.ijrobp.2016.01.055 Thorwarth, 2015, Personalized precision radiotherapy by integration of multi-parametric functional and biological imaging in prostate cancer: a feasibility study, Z Med Phys, 27, 21 Yuan, 2013, Feasibility study of in vivo MRI based dosimetric verification of proton end-of-range for liver cancer patients, Radiother Oncol, 106, 378, 10.1016/j.radonc.2013.01.016 Lagendijk, 2014, MR guidance in radiotherapy, Phys Med Biol, 59, R349, 10.1088/0031-9155/59/21/R349 Guerreiro, 2017, Evaluation of a multi-atlas CT synthesis approach for MRI-only radiotherapy treatment planning, Phys Med, 35, 7, 10.1016/j.ejmp.2017.02.017 Siversson, 2015, Technical note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm, Med Phys, 42, 6090, 10.1118/1.4931417 Moteabbed, 2014, Dosimetric feasibility of real-time MRI-guided proton therapy, Med Phys, 41, 111713, 10.1118/1.4897570 Koivula, 2016, Feasibility of MRI-only treatment planning for proton therapy in brain and prostate cancers: dose calculation accuracy in substitute CT images, Med Phys, 43, 4634, 10.1118/1.4958677 Fuchs, 2017, Magnetic field effects on particle beams and their implications for dose calculation in MR guided particle therapy, Med Phys, 44, 1149, 10.1002/mp.12105 Helmbrecht, 2017, In-beam PET at clinical proton beams with pile-up rejection, Z Med Phys, 1 Bauer, 2013, Implementation and initial clinical experience of offline PET/CT-based verification of scanned carbon ion treatment, Radiother Oncol, 107, 218, 10.1016/j.radonc.2013.02.018 Nischwitz, 2015, Clinical implementation and range evaluation of in vivo PET dosimetry for particle irradiation in patients with primary glioma, Radiother Oncol, 115, 179, 10.1016/j.radonc.2015.03.022 Nishio, 2010, The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy, Int J Radiat Oncol Biol Phys, 76, 277, 10.1016/j.ijrobp.2009.05.065 Shao, 2014, In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study, Phys Med Biol, 59, 3373, 10.1088/0031-9155/59/13/3373 Richter, 2016, First clinical application of a prompt gamma based in vivo proton range verification system, Radiother Oncol, 118, 232, 10.1016/j.radonc.2016.01.004 Winkel, 2016, Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer, Phys Med Biol, 61, 8587, 10.1088/1361-6560/61/24/8587 Sharfo, 2016, Validation of fully automated VMAT plan generation for library-based plan-of-the-day cervical cancer radiotherapy, PLOS ONE, 11, e0169202, 10.1371/journal.pone.0169202 Kurz, 2016, Feasibility of automated proton therapy plan adaptation for head and neck tumors using cone beam CT images, Radiat Oncol, 11, 64, 10.1186/s13014-016-0641-7 Tilly, 2013, Dose mapping sensitivity to deformable registration uncertainties in fractionated radiotherapy – applied to prostate proton treatments, BMC Med Phys, 13, 2, 10.1186/1756-6649-13-2