The technological basis for adaptive ion beam therapy at MedAustron: Status and outlook
Tài liệu tham khảo
Hoffmann, 2016, Adaptation is mandatory for intensity modulated proton therapy of advanced lung cancer to ensure target coverage, Radiother Oncol, 122, 400, 10.1016/j.radonc.2016.12.018
Flohr, 2016, 40 Jahre Computertomographie – Rückblick und aktuell Entwicklungen, Z Med Phys, 26, 195, 10.1016/j.zemedi.2016.06.001
Van Elmpt, 2016, Dual energy CT in radiotherapy: current applications and future outlook, Radiother Oncol, 119, 137, 10.1016/j.radonc.2016.02.026
Slater, 1998, Conformal proton therapy for prostate carcinoma, Int J Radiat Oncol Biol Phys, 42, 299, 10.1016/S0360-3016(98)00225-9
Zechner, 2016, Development and first use of a novel cylindrical ball bearing phantom for 9-DOF geometric calibrations of flat panel imaging devices used in image-guided ion beam therapy, Phys Med Biol, 61, N592, 10.1088/0031-9155/61/22/N592
Seppenwoolde, 2016, Impact of organ shape variations on margin concepts for cervix cancer ART, Radiother Oncol, 120, 526, 10.1016/j.radonc.2016.08.004
Li, 2015, Robust optimization in intensity-modulated proton therapy to account for anatomy changes in lung cancer patients, Radiother Oncol, 114, 367, 10.1016/j.radonc.2015.01.017
Hamming-Vrieze, 2017, Analysis of GTV reduction during radiotherapy for oropharyngeal cancer: implications for adaptive radiotherapy, Radiother Oncol, 122, 224, 10.1016/j.radonc.2016.10.012
Bryant, 2000
Rossi, 2011, The status of CNAO, Eur Phys J Plus, 126, 1, 10.1140/epjp/i2011-11078-8
ICRU Report Committee IR, 2007, ICRU REPORT 78 prescribing, recording, and reporting proton-beam therapy, J ICRU
Giordanengo, 2015, The CNAO dose delivery system for modulated scanning ion beam radiotherapy, Med Phys, 42, 263, 10.1118/1.4903276
Grevillot, 2015, Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy, Phys Med Biol, 60, 7985, 10.1088/0031-9155/60/20/7985
Nairz, 2013, Accuracy of robotic patient positioners used in ion beam therapy, Radiat Oncol, 8, 124, 10.1186/1748-717X-8-124
Ableitinger, 2017, Commissioning of a robotic patient positioning system equipped with an integrated tracking system, Radiother Oncol, 123, S958.16
Utz, 2017, Quality assurance of a novel table mounted imaging device integrated in a patient positioning system, Radiother Oncol, 123, S261, 10.1016/S0167-8140(17)30931-3
Keuschnigg, 2017, Flat-field correction pipeline for a cone-beam computed tomography imaging device with independently movable source and detector, Med Phys, 44, 132, 10.1002/mp.12033
Vargas, 2007, Rectal dose-volume differences using proton radiotherapy and a rectal balloon or water alone for the treatment of prostate cancer, Int J Radiat Oncol Biol Phys, 69, 1110, 10.1016/j.ijrobp.2007.04.075
Steiner, 2013, Imaging dose assessment for IGRT in particle beam therapy, Radiother Oncol, 109, 409, 10.1016/j.radonc.2013.09.007
Park, 2015, Proton dose calculation on scatter-corrected CBCT image: feasibility study for adaptive proton therapy, Med Phys, 42, 4449, 10.1118/1.4923179
Kurz, 2016, Investigating deformable image registration and scatter correction for CBCT-based dose calculation in adaptive IMPT, Med Phys, 43, 5635, 10.1118/1.4962933
Arai, 2016, Feasibility of CBCT-based proton dose calculation using a histogram-matching algorithm in proton beam therapy, Phys Med, 33, 68, 10.1016/j.ejmp.2016.12.006
Stock, 2012, IGRT induced dose burden for a variety of imaging protocols at two different anatomical sites, Radiother Oncol, 102, 355, 10.1016/j.radonc.2011.10.005
Deutschmann, 2012, First clinical release of an online, adaptive, aperture-based image-guided radiotherapy strategy in intensity-modulated radiotherapy to correct for inter- and intrafractional rotations of the prostate, Int J Radiat Oncol Biol Phys, 83, 1624, 10.1016/j.ijrobp.2011.10.009
Sorriaux, 2017, Experimental assessment of proton dose calculation accuracy in inhomogeneous media, Phys Med Eur J Med Phys, 38, 10
Farace, 2017, Supine craniospinal irradiation in pediatric patients by proton pencil beam scanning, Radiother Oncol, 123, 112, 10.1016/j.radonc.2017.02.008
Bäumer, 2017, Dosimetry intercomparison of four German proton therapy institutions employing spot scanning, Z Med Phys, 10.1016/j.zemedi.2016.06.007
Meier, 2015, Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy, Phys Med Biol, 60, 2819, 10.1088/0031-9155/60/7/2819
Li, 2013, Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance, Med Phys, 40, 21703, 10.1118/1.4773312
Furtado, 2013, Real-time 2D/3D registration using kV–MV image pairs for tumor motion tracking in image guided radiotherapy, Acta Oncol, 52, 1464, 10.3109/0284186X.2013.814152
Juneja, 2016, Kilovoltage intrafraction monitoring for real-time image guided adaptive radiotherapy reduces total dose for lung SABR, Radiother Oncol, 121, 15, 10.1016/j.radonc.2016.08.030
Kim, 2017, Water equivalent path length calculations using scatter-corrected head and neck CBCT images to evaluate patients for adaptive proton therapy, Phys Med Biol, 62, 59, 10.1088/1361-6560/62/1/59
Wang, 2016, Quantitative assessment of anatomical change using a virtual proton depth radiograph for adaptive head and neck proton therapy, J Appl Clin Med Phys, 17, 427, 10.1120/jacmp.v17i2.5819
Landry, 2014, Phantom based evaluation of CT to CBCT image registration for proton therapy dose recalculation, Phys Med Biol, 60, 595, 10.1088/0031-9155/60/2/595
Veiga, 2016, First clinical investigation of cone beam computed tomography and deformable registration for adaptive proton therapy for lung cancer, Int J Radiat Oncol Biol Phys, 95, 549, 10.1016/j.ijrobp.2016.01.055
Thorwarth, 2015, Personalized precision radiotherapy by integration of multi-parametric functional and biological imaging in prostate cancer: a feasibility study, Z Med Phys, 27, 21
Yuan, 2013, Feasibility study of in vivo MRI based dosimetric verification of proton end-of-range for liver cancer patients, Radiother Oncol, 106, 378, 10.1016/j.radonc.2013.01.016
Lagendijk, 2014, MR guidance in radiotherapy, Phys Med Biol, 59, R349, 10.1088/0031-9155/59/21/R349
Guerreiro, 2017, Evaluation of a multi-atlas CT synthesis approach for MRI-only radiotherapy treatment planning, Phys Med, 35, 7, 10.1016/j.ejmp.2017.02.017
Siversson, 2015, Technical note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm, Med Phys, 42, 6090, 10.1118/1.4931417
Moteabbed, 2014, Dosimetric feasibility of real-time MRI-guided proton therapy, Med Phys, 41, 111713, 10.1118/1.4897570
Koivula, 2016, Feasibility of MRI-only treatment planning for proton therapy in brain and prostate cancers: dose calculation accuracy in substitute CT images, Med Phys, 43, 4634, 10.1118/1.4958677
Fuchs, 2017, Magnetic field effects on particle beams and their implications for dose calculation in MR guided particle therapy, Med Phys, 44, 1149, 10.1002/mp.12105
Helmbrecht, 2017, In-beam PET at clinical proton beams with pile-up rejection, Z Med Phys, 1
Bauer, 2013, Implementation and initial clinical experience of offline PET/CT-based verification of scanned carbon ion treatment, Radiother Oncol, 107, 218, 10.1016/j.radonc.2013.02.018
Nischwitz, 2015, Clinical implementation and range evaluation of in vivo PET dosimetry for particle irradiation in patients with primary glioma, Radiother Oncol, 115, 179, 10.1016/j.radonc.2015.03.022
Nishio, 2010, The development and clinical use of a beam ON-LINE PET system mounted on a rotating gantry port in proton therapy, Int J Radiat Oncol Biol Phys, 76, 277, 10.1016/j.ijrobp.2009.05.065
Shao, 2014, In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study, Phys Med Biol, 59, 3373, 10.1088/0031-9155/59/13/3373
Richter, 2016, First clinical application of a prompt gamma based in vivo proton range verification system, Radiother Oncol, 118, 232, 10.1016/j.radonc.2016.01.004
Winkel, 2016, Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer, Phys Med Biol, 61, 8587, 10.1088/1361-6560/61/24/8587
Sharfo, 2016, Validation of fully automated VMAT plan generation for library-based plan-of-the-day cervical cancer radiotherapy, PLOS ONE, 11, e0169202, 10.1371/journal.pone.0169202
Kurz, 2016, Feasibility of automated proton therapy plan adaptation for head and neck tumors using cone beam CT images, Radiat Oncol, 11, 64, 10.1186/s13014-016-0641-7
Tilly, 2013, Dose mapping sensitivity to deformable registration uncertainties in fractionated radiotherapy – applied to prostate proton treatments, BMC Med Phys, 13, 2, 10.1186/1756-6649-13-2