The “teapot in a city”: A paradigm shift in urban climate modeling
Tóm tắt
Urban areas are a high-stake target of climate change mitigation and adaptation measures. To understand, predict, and improve the energy performance of cities, the scientific community develops numerical models that describe how they interact with the atmosphere through heat and moisture exchanges at all scales. In this review, we present recent advances that are at the origin of last decade’s revolution in computer graphics, and recent breakthroughs in statistical physics that extend well-established path-integral formulations to nonlinear coupled models. We argue that this rare conjunction of scientific advances in mathematics, physics, computer, and engineering sciences opens promising avenues for urban climate modeling and illustrate this with coupled heat transfer simulations in complex urban geometries under complex atmospheric conditions. We highlight the potential of these approaches beyond urban climate modeling for the necessary appropriation of the issues at the heart of the energy transition by societies.
Từ khóa
Tài liệu tham khảo
UN World urbanization prospects—the 2018 revision (Technical Report ST/ESA/SER.A/420 Department of Economic and Social Affairs 2019).
E. Vorger “Étude de l’influence du comportement des occupants sur la performance énergétique des bâtiments ” thesis École nationale supérieure des mines de Paris (2014).
D. Robinson F. Haldi P. Leroux D. Perez A. Rasheed U. Wilke CITYSIM: Comprehensive Micro-Simulation of Resource Flows for Sustainable Urban Planning Building Simulation 2009: Proceedings of the Eleventh International IBPSA Conference (Glasgow Scotland 2009) (Glasgow 2009) pp. 1083–1090.
J. Vinet “Contribution à la modélisation thermo-aéraulique du microclimat urbain. Caractérisation de l’impact de l’eau et de la végétation sur les conditions de confort en espaces extérieurs ” thesis Université de Nantes (2000).
E. Haines Spline surface rendering and what’s wrong with octrees Ray Tracing News 1 article 4 (1988); https://graphics.stanford.edu/pub/Graphics/RTNews/html/rtnews1b.html#art4.
M. Kac On some connections between probability theory and differential and integral equations in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability J. Neyman Ed. (University of California Press 1951) pp. 189–215.
I. Lux L. Koblinger Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press 1991).
R. Farnoosh, M. Ebrahimi, Monte Carlo method for solving Fredholm integral equations of the second kind. Appl. Math Comput. 195, 309–315 (2008).
A. Doucet, A. M. Johansen, V. B. Tadić, On solving integral equations using Markov chain Monte Carlo methods. Appl. Math Comput. 216, 2869–2880 (2010).
P. Del Moral F.-K. Formulae S. Asmussen J. Gani P. Jagers T. Kurtz Probability and Its Applications (Springer 2004) pp. 47–93.
K. Itô H. McKean Diffusion Processes and Their Sample Paths: Reprint of the 1974 Edition (Springer 1996).
B. Lapeyre É. Pardoux E. Pardoux R. Sentis Introduction to Monte Carlo Methods for Transport and Diffusion Equations Vol. 6 (Oxford University Press on Demand 2003).
E. Veach “Robust Monte Carlo methods for light transport simulation ” thesis Stanford University Stanford CA (1998).
M. Pharr G. Humphreys Physically Based Rendering Third Edition: From Theory To Implementation (Morgan Kaufmann ed. 3 2018).
A. S. Glassner An Introduction to Ray Tracing (Academic Press Ltd. 1989).
M. Raab D. Seibert A. Keller in Monte Carlo and Quasi-Monte Carlo Methods 2006 A. Keller S. Heinrich H. Niederreiter Eds. (Springer 2006) pp. 591–605.
R. Fournier, S. Blanco, V. Eymet, E. Mouna, C. Spiesser, Radiative, conductive and convective heat-transfers in a single Monte Carlo algorithm. J. Phys. 676, 012007 (2016).
V. Gattepaille “Modèles multi-échelles de photobioréacteurs solaires et méthode de Monte Carlo ” thesis Université Clermont Auvergne (2020).
J.-M. Tregan “Thermique non-linéaire et Monte-Carlo ” thesis Université Toulouse 3 Paul Sabatier (2020).
W. C. Skamarock J. B. Klemp J. Dudhia D. O. Gill D. Barker M. G. Duda J. G. Powers A description of the Advanced Research WRF version 3 (NCAR/TN-475+STR University Corporation for Atmospheric 2008).