The target gene of tae‐miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust

Molecular Plant Pathology - Tập 15 Số 3 - Trang 284-296 - 2014
Hao Feng1, Xiaoyuan Duan2, Qiong Zhang2, Xiaorui Li1, Bing Wang1, Lili Huang1, Xiaojie Wang1, Zhensheng Kang1
1State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection Northwest A&F University Yangling Shaanxi 712100 China
2College of Life Sciences Northwest A&F University Yangling Shaanxi 712100 China

Tóm tắt

SummarymicroRNA (miRNA) participates in various physiological and biochemical processes in plants by regulating corresponding target genes. NAC [NAM (no apical meristem), ATAF (Arabidopsis transcription activation factor) and CUC (cup‐shaped cotyledon)] transcription factors, usually as the targets of miR164, play important roles in the regulation of plant development and responses to abiotic and biotic stresses. In a previous study, the target gene of tae‐miR164 in wheat was sequenced through degradome sequencing. In this study, we isolated the full‐length cDNA of the candidate target gene, which is a NAC transcription factor gene in the NAM subfamily, and designated it as TaNAC21/22 after bioinformatics analysis. The interaction between TaNAC21/22 and tae‐miR164 was confirmed experimentally through co‐transformation of both genes in tobacco leaves. Transcript accumulation of TaNAC21/22 and tae‐miR164 showed contrasting divergent expression patterns in wheat response to Puccinia striiformis f. sp. tritici (Pst). TaNAC21/22 was confirmed to be located in the nucleus and could function as a transcriptional activator. Silencing of the individual gene showed that TaNAC21/22 negatively regulates resistance to stripe rust. These results indicate that the target of tae‐miR164, a novel NAC transcription factor from the NAM subfamily of wheat, plays an important role in regulating the resistance of host plants to stripe rust.

Từ khóa


Tài liệu tham khảo

10.1093/molbev/msq328

10.1007/s11103-008-9415-4

10.1105/tpc.016238

10.1016/j.cub.2005.02.017

10.1016/S0092-8674(04)00045-5

10.1073/pnas.0705114104

10.1186/1471-2229-9-152

10.1186/1756-0500-4-302

10.1016/j.pbi.2008.09.008

10.1023/A:1010639225091

10.1111/j.1365-313X.2005.02488.x

10.1007/s11033-010-0501-8

10.1016/j.plaphy.2011.10.010

10.1111/j.1365-313X.2004.02171.x

10.1105/tpc.105.030841

10.1111/j.1365-313X.2005.02575.x

10.1023/B:PLAN.0000006944.61384.11

10.1046/j.1365-313X.2002.01291.x

10.1073/pnas.0604882103

10.1016/j.jplph.2009.10.014

10.1002/j.1460-2075.1987.tb02730.x

10.1016/j.jplph.2009.06.011

10.1016/j.febslet.2008.06.053

10.1007/PL00008647

10.1126/science.1166386

10.1242/dev.01320

10.1016/j.cub.2004.06.022

10.1046/j.1365-313X.2002.01424.x

10.1126/science.1126088

10.1105/tpc.106.045617

10.1007/s00438-012-0686-8

10.1093/dnares/10.6.239

10.1016/j.pbi.2009.06.005

10.1038/nature01958

10.1111/j.1365-313X.2008.03483.x

10.1105/tpc.12.10.1917

10.1016/S0092-8674(00)80902-2

10.1105/tpc.105.039834

10.1016/j.bbagrm.2008.04.004

10.1242/dev.02817

10.1016/S0092-8674(00)81093-4

10.1007/s00438-010-0557-0

10.1111/j.1399-3054.2011.01539.x

10.4161/gmcr.1.1.10569

10.1126/science.1133649

10.1016/j.pmpp.2008.02.006

10.1128/JVI.00941-09

10.1007/s11033-010-0023-4

10.1016/j.pmpp.2010.06.005

10.1023/A:1006138221874

10.1186/1471-2229-10-123

10.1093/mp/ssr013

10.1105/tpc.108.064048

10.1101/gad.11.13.1621

10.1371/journal.pone.0044968