The synthesis of Al-MCM-41 from volclay — A low-cost Al and Si source

Applied Clay Science - Tập 46 - Trang 185-189 - 2009
M. Adjdir1, T. Ali-Dahmane2, F. Friedrich1, T. Scherer3, P.G. Weidler1
1Institut für Funktionelle Grenzflächen (IFG), Division of Nanomineralogy Forschungszentrum Karlsruhe GmbH, D-76021 Karlruhe, Germany
2Materials Chemical Laboratory, University of Oran, BO: 31100 Oran Es-Sénia, Algeria
3Institute for Nanotechnology Forschungszentrum Karlsruhe, GmbH D-76021 Karlsruhe, Germany

Tài liệu tham khảo

Beck, 1992, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Sot., 114, 10834, 10.1021/ja00053a020 Brunauer, 1938, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309, 10.1021/ja01269a023 Cheng, 1997, Optimal parameters for the synthesis of the mesoporous molecular sieve [ Si ]-MCM-41, J. Chem. Soc., Faraday Trans., 93, 193, 10.1039/a605100f Kang, 2005, Synthesis of mesoporous Al-MCM-41 materials using metakaolin as aluminum source, Mater. Lett., 59, 1426, 10.1016/j.matlet.2004.11.057 Kresge, 1992, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359, 710, 10.1038/359710a0 Kruk, 2001, Gas adsorption characterization of ordered organic–inorganic nanocomposite materials, Chem. Mater., 13, 3169, 10.1021/cm0101069 Kumar, 2001, Mesoporous materials prepared using coal fly ash as the silicon and aluminium source, Journal of Mater. Chem., 11, 3285, 10.1039/b104810b Lowell, S., Shields, J.E., Thomas, M. Thommes, M.A., 2006. Characterization of Porous Solids and Podwers: Surface Area, Pore Size and Density, (Ed,), Springer, 347. Luechinger, 2003, A mechanistic explanation of the formation of high quality MCM-41 with high hydrothermal stability, Microporous Mesoporous Mater., 64, 203, 10.1016/S1387-1811(03)00483-9 Melo, 1999, MCM-41 ordered mesoporous molecular sieves synthesis and characterization, Mat. Res., 2, 173, 10.1590/S1516-14391999000300010 Mokaya, 2001, Hydrothermally-induced morphological transformation of mesoporous MCM-41, Microporous Mesoporous Mater., 44–45, 119, 10.1016/S1387-1811(01)00175-5 Moller, 1998, Inclusion chemistry in periodic mesoporous hosts, Chem. Mater., 10, 2950, 10.1021/cm980243e Moreno, 2001, Potential environmental application of pure zeolitic material synthesized from fly ash, J. Envir. Eng. Sci., 996 Pauwels, 2001, Structure determination of spherical MCM-41 particles, Adv. Mater., 13, 1317, 10.1002/1521-4095(200109)13:17<1317::AID-ADMA1317>3.0.CO;2-5 Ryoo, 1995, Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium, J. Chem. Soc., Chem. Commun., 711, 10.1039/c39950000711 Sayari, 1996, Catalysis by crystalline mesoporous molecular sieves, Chem. Mater., 8, 1840, 10.1021/cm950585+ Sing, 1985, Reporting physisorption data for gas/solid system, Pure Appl. Chem., 57, 603, 10.1351/pac198557040603 Singer, 1995, Cation exchange properties of hydrothermally treated coal fly ash, Environ. Sci. Technol., 29, 1748, 10.1021/es00007a009 Sherman, 1999, Synthetic zeolites and other microporous oxide molecular sieves, Proc. Natl. Acad. Sci. USA, 96, 3471, 10.1073/pnas.96.7.3471 Wakihara, 2004, Crystal growth of faujasite observed by atomic force microscopy, Microporous Mesoporous Mater., 70, 7, 10.1016/j.micromeso.2004.02.016