The synthesis of 2D MoS2 flakes with tunable layer numbers via pulsed-Argon-flow assisted CVD approach
Tài liệu tham khảo
Novoselov, 2016, 2D materials and van der Waals heterostructures, Science, 353, aac9439, 10.1126/science.aac9439
Manzeli, 2017, 2D transition metal dichalcogenides, Nat. Rev. Mater, 2, 17033, 10.1038/natrevmats.2017.33
Lee, 2019, Piezoelectric energy harvesting from two-dimensional boron nitride nanoflakes, ACS Appl. Mater. Interfaces, 11, 37920, 10.1021/acsami.9b12187
Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279
Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w
Mak, 2010, Atomically thin MoS₂: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 474, 10.1103/PhysRevLett.105.136805
Wang, 2018, Electroluminescent devices based on 2D semiconducting transition metal dichalcogenides, Adv. Mater., 30, 1802687, 10.1002/adma.201802687
Yoon, 2011, How good can monolayer MoS2 transistors be?, Nano Lett., 11, 3768, 10.1021/nl2018178
Zhu, 2013, Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules, J. Am. Chem. Soc., 135, 5998, 10.1021/ja4019572
Gopalakrishnan, 2014, MoS2 quantum dots interspersed exfoliated MoS2 nanosheets, ACS Nano, 8, 5297, 10.1021/nn501479e
Seol, 2018, Triboelectric series of 2D layered materials, Adv. Mater., 30, 1801210, 10.1002/adma.201801210
Seo, 2019, Out-of-plane piezoresponse of monolayer MoS2 on plastic substrates enabled by highly uniform and layer-controllable CVD, Appl. Surf. Sci., 487, 1356, 10.1016/j.apsusc.2019.05.140
Chen, 2018, The effect of the experimental parameters on the growth of MoS2 flakes, CrystEngComm, 20, 4823, 10.1039/C8CE00733K
Chen, 2017, Temperature-dependent two-dimensional transition metal dichalcogenide heterostructures: controlled synthesis and their properties, ACS Appl. Mater. Interfaces, 9, 30821, 10.1021/acsami.7b08313
Chen, 2017, Enhanced local photoluminescence of a multilayer MoS2 nanodot stacked on monolayer MoS2 flakes, Opt. Mater. Express, 7, 1365, 10.1364/OME.7.001365
Chen, 2017, Improved light emission of MoS2 monolayers by constructing AlN/MoS2 core-shell nanowires, J. Mater. Chem. C, 5, 10225, 10.1039/C7TC03231E
Chen, 2019, Growth and optical properties of large-scale MoS2 films with different thickness, Ceram. Int., 45, 15091, 10.1016/j.ceramint.2019.04.248
Chen, 2018, Two-step fabrication of large-scale MoS2 hollow flakes, CrystEngComm, 20, 5619, 10.1039/C8CE00963E
Subbaiah, 2016, Atomically thin MoS2 : a versatile nongraphene 2D material, Adv. Funct. Mater., 26, 2046, 10.1002/adfm.201504202
Chang, 2019, A large-area and strain-reduced two-dimensional molybdenum disulfide monolayer emitter on a three-dimensional substrate, ACS Appl. Mater. Interfaces, 11, 26243, 10.1021/acsami.9b05082
Xu, 2019, High‐performance monolayer MoS2 films at the wafer scale by two‐step growth, Adv. Funct. Mater., 29, 1901070, 10.1002/adfm.201901070
Wang, 2019, Mechanism of alkali metal compound-promoted growth of monolayer MoS2: eutectic intermediates, Chem. Mater., 31, 873, 10.1021/acs.chemmater.8b04022
Li, 2018, Site-specific positioning and patterning of MoS2 monolayers-the role of Au seeding, ACS Nano, 12, 8970, 10.1021/acsnano.8b02409
Li, 2018, A facile space-confined solid-phase sulfurization strategy for growth of high-quality ultrathin molybdenum disulfide single crystals, Nano Lett., 18, 2021, 10.1021/acs.nanolett.7b05473
Lim, 2018, Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier, ACS Nano, 12, 1339, 10.1021/acsnano.7b07682
Xia, 2015, On the spectroscopic signatures of AA' and AB stacking of chemical vapor deposited bilayer MoS2, ACS Nano, 9, 12246, 10.1021/acsnano.5b05474
Liu, 2014, Evolution of interlayer coupling in twisted molybdenum disulfide bilayers, Nat. Commun., 5, 4966, 10.1038/ncomms5966
Yan, 2015, Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry, Nano Lett., 15, 8155, 10.1021/acs.nanolett.5b03597
Zhang, 2014, Three-dimensional spirals of atomic layered MoS2, Nano Lett., 14, 6418, 10.1021/nl502961e
Bilgin, 2015, Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality, ACS Nano, 9, 8822, 10.1021/acsnano.5b02019
Kim, 2014, Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2, ACS Nano, 8, 10551, 10.1021/nn503988x
Lee, 2010, Anomalous lattice vibrations of single- and few-layer MoS2, ACS Nano, 4, 2695, 10.1021/nn1003937
Ji, 2013, Epitaxial monolayer MoS2 on mica with novel photoluminescence, Nano Lett., 13, 3870, 10.1021/nl401938t
Jeon, 2015, Layer-controlled CVD growth of large-area two-dimensional MoS2 films, Nanoscale, 7, 1688, 10.1039/C4NR04532G
Coehoorn, 1987, Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy, Phys. Rev. B, 35, 6195, 10.1103/PhysRevB.35.6195
Wang, 2014, Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition, Chem. Mater., 26, 10.1021/cm5025662
Hu, 2017, Controlled synthesis and mechanism of large-area WS2 flakes by low-pressure chemical vapor deposition, J. Mater. Sci., 52, 7215, 10.1007/s10853-017-0958-0