The syndapin protein family: linking membrane trafficking with the cytoskeleton

Journal of Cell Science - Tập 117 Số 15 - Trang 3077-3086 - 2004
Michael M. Kessels1, Britta Qualmann1
1Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany

Tóm tắt

Syndapins – also called PACSINs – are highly conserved Src-homology 3 (SH3)-domain-containing proteins that seem to exist in all multicellular eukaryotes. They interact with the large GTPase dynamin and several other proteins implicated in vesicle trafficking. Syndapin-dynamin complexes appear to play an important role in vesicle fission at different donor membranes, including the plasma membrane (endocytosis) and Golgi membranes. In addition, syndapins are implicated in later steps of vesicle cycling in neuronal and non-neuronal cells. Syndapins also interact with N-WASP, a potent activator of the Arp2/3 complex that forms a critical part of the actin polymerization machinery. Syndapin oligomers can thereby couple bursts of actin polymerization with the vesicle fission step involving dynamins. This allows newly formed vesicles to move away from the donor membrane driven by actin polymerization. Syndapins also engage in additional interactions with molecules involved in several signal transduction pathways, producing crosstalk at the interface between membrane trafficking and the cytoskeleton. Given the distinct expression patterns of the different syndapins and their splice forms, these proteins could have isoform-specific functions.

Từ khóa


Tài liệu tham khảo

Beck, K. A. and Nelson, W. J. (1998). A spectrin membrane skeleton of the Golgi complex. Biochim. Biophys. Acta. Mol. Cell Res.1404, 153-160.

Braun, A., Pinyol i Agelet, R., Dahlhaus, R., Grant, B. D., Kessels, M. M. and Qualmann, B. (2004). Interaction of EHD proteins with syndapin I and II, a basis for functional connections between membrane trafficking and the actin cytoskeleton. Eur. J. Cell Biol.83 Suppl. 54, 81 (Abstract MS10-3).

Cao, H., Orth, J. D., Chen, J., Weller, S. G., Heuser, J. E. and McNiven, M. A. (2003). Cortactin is a component of clathrin-coated pits and participates in receptor-mediated endocytosis. Mol. Biol. Cell23, 2162-2170.

Cousin, H., Gaultier, A., Bleux, C., Darribère, T. and Alfandari, D. (2000). PACSIN2 is a regulator of the metalloprotease/disintegrin ADAM13. Dev. Biol.227, 197-210.

Cremona, O., di Paolo, G., Wenk, M. R., Lüthi, A., Kim, W. T., Takei, K., Daniell, L., Nemoto, Y., Shears, S. B., Flavell, R. A. et al. (1999). Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell99, 179-188.

da Costa, S. R., Sou, E., Xie, J., Yarber, F. A., Okamoto, C. T., Pidgeon, M., Kessels, M. M., Mircheff, A. K., Schechter, J. E., Qualmann, B. et al. (2003). Impairing actin filament or syndapin functions promotes accumulation of clathrin-coated vesicles at the apical plasma membrane of acinar epithelial cells. Mol. Biol. Cell14, 4397-4413.

De Matteis, M. A. and Morrow, J. S. (2000). Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci.113, 2331-2343.

di Campli, A., Valderrama, F., Babià, T., de Matteis, M. A., Luini, A. and Egea, G. (1999). Morphological changes in the Golgi complex correlate with actin cytoskeleton rearrangements. Cell Motil. Cytoskeleton43, 334-348.

Engqvist-Goldstein, Å. E. Y. and Drubin, D. G. (2003). Actin assembly and endocytosis: from yeast to mammals. Annu. Rev. Cell Dev. Biol.19, 287-332.

Fucini, R. V., Chen, J. L., Sharma, C., Kessels, M. M. and Stamnes, M. (2002). Golgi vesicle proteins are linked to the assembly of an actin complex defined by mAbp1. Mol. Biol. Cell13, 621-631.

Ghadimi, M. P., Sanzenbacher, R., Thiede, B., Wenzel, J., Jing, Q., Plomann, M., Borkhardt, A., Kabelitz, D. and Janssen, O. (2002). Identification of interaction partners of the cytosolic polyproline region of CD95 ligand (CD178). FEBS Lett.519, 50-58.

Grant, B., Zhang, Y., Paupard, M. C., Lin, S. X., Hall, D. H. and Hirsh, D. (2001). Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat. Cell Biol.3, 573-579.

Guilherme, A., Soriano, N. A., Bose, S., Holik, J., Bose, A., Pomerleau, D. P., Furcinitti, P., Leszyk, J., Corvera, S. and Czech, M. P. (2004). EHD2 and the novel EH-domain binding protein EHBP1 couple endocytosis to the actin cytoskeleton. J. Biol. Chem.279, 10593-10605.

Gundelfinger, E. D., Kessels, M. M. and Qualmann, B. (2003). Temporal and spatial coordination of exocytosis and endocytosis. Nat. Rev. Mol. Cell. Biol.4, 127-139.

Harjes, P. and Wanker, E. E. (2003). The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem. Sci.28, 425-433.

Higgs, H. N. and Pollard, T. D. (2001). Regulation of actin filament network formation through Arp2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem.70, 649-676.

Hilfiker, S., Pieribone, V. A., Czernik, A. J., Kao, H. T., Augustine, G. J. and Greengard, P. (1999). Synapsins as regulators of neurotransmitter release. Philos. Trans. R. Soc. London B. Biol. Sci.354, 269-279.

Hilton, J. M., Plomann, M., Ritter, B., Modregger, J., Freeman, H. N., Falck, J. R., Krishna, U. M. and Tobin, A. B. (2001). Phosphorylation of a synaptic vesicle-associated protein by an inositol hexakisphosphate-regulated protein kinase. J. Biol. Chem.276, 16341-16347.

Hinshaw, J. E. (2000). Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol.16, 483-519.

Howard, L., Nelson, K. K., Maciewicz, R. A. and Blobel, C. P. (1999). Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J. Biol. Chem.274, 31693-31699.

Janssen, O., Qian, J., Linkermann, A. and Kabelitz, D. (2003). CD95 ligand-death factor and costimulatory molecule? Cell Death Differ.10, 1215-1225.

Jones, S. M., Howell, K. E., Henley, J. R., Cao, H. and McNiven, M. A. (1998). Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science279, 573-577.

Kessels, M. M., Engqvist-Goldstein, Å. E. Y., Drubin, D. G. and Qualmann, B. (2001). Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J. Cell Biol.153, 351-366.

Kessels, M. M. and Qualmann, B. (2002). Syndapins integrate N-WASP in receptor-mediated endocytosis. EMBO J.21, 6083-6094.

Kessels, M. M., Dong, J., Westermann, P. and Qualmann, B. (2003). Dynamin II and syndapin II form heterodimeric complexes promoting vesicle formation at the trans-Golgi network. Mol. Biol. Cell14 Suppl., 377a (Abstract 2111).

Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. and Rosen, M. K. (2000). Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature404, 151-158.

Lee, E. and de Camilli, P. (2002). Dynamin at actin tails. Proc. Natl. Acad. Sci. USA99, 161-166.

Lin, S. X., Grant, B., Hirsh, D. and Maxfield, F. R. (2001). Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat. Cell Biol.3, 567-572.

Luna, A., Matas, O. B., Martínez-Menárguez, J. A., Mato, E., Durán, J. M., Ballesta, J., Way, M. and Egea, G. (2002). Regulation of protein transport from the Golgi complex to the endoplasmic reticulum by CDC42 and N-WASP. Mol. Biol. Cell13, 866-879.

McFarlane, S. (2003). Metalloproteases: carving out a role in axon guidance. Neuron37, 559-562.

McNiven, M. A., Kim, L., Krueger, E. W., Orth, J. D., Cao, H. and Wong, T. W. (2000). Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J. Cell Biol.151, 187-198.

Meriläinen, J., Lehto, V. P. and Wasenius, V. M. (1997). FAP52, a novel, SH3 domain-containing focal adhesion protein. J. Biol. Chem.272, 23278-23284.

Merrifield, C. J., Feldman, M. E., Wan, L. and Almers, W. (2002). Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol.4, 691-698.

Merrifield, C. J., Qualmann, B., Kessels, M. M. and Almers, W. (2004). Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol.83, 13-18.

Miki, H., Sasaki, T., Takai, Y. and Takenawa, T. (1998). Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature391, 93-96.

Mise-Omata, S., Montagne, B., Deckert, M., Wienands, J. and Acuto, O. (2003). Mammalian actin binding protein 1 is essential for endocytosis but not lamellipodia formation: functional analysis by RNA interference. Biochem. Biophys. Res. Commun.301, 704-710.

Modregger, J., Ritter, B., Witter, B., Paulsson, M. and Plomann, M. (2000). All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J. Cell Sci.113, 4511-4521.

Modregger, J., DiProspero, N. A., Charles, V., Tagle, D. A. and Plomann, M. (2002). PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington's disease brains. Hum. Mol. Genet.11, 2547-2558.

Mori, S., Tanaka, M., Nanba, D., Nishiwaki, E., Ishiguro, H., Higashiyama, S. and Matsuura, N. (2003). PACSIN3 binds ADAM12/meltrin α and up-regulates ectodomain shedding of heparin-binding epidermal growth factor-like growth factor. J. Biol. Chem.278, 46029-46034.

Morris, S. A. and Schmid, S. L. (1995). Synaptic vesicle recycling. The Ferrari of endocytosis? Curr. Biol.5, 113-115.

Müsch, A., Cohen, D., Kreitzer, G. and Rodriguez-Boulan, E. (2001). cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J.20, 2171-2179.

Nikki, M., Meriläinen, J. and Lehto, V. P. (2002a). FAP52 regulates actin organization via binding to filamin. J. Biol. Chem.277, 11432-11440.

Nikki, M., Meriläinen, J. and Lehto, V. P. (2002b). Focal adhesion protein FAP52 self-associates through a sequence conserved among the members of the PCH family proteins. Biochemistry41, 6320-6329.

Olazabal, I. M. and Machesky, L. M. (2001). Abp1p and cortactin, new `hand-holds' for actin. J. Cell Biol.154, 679-682.

Orth, J. D. and McNiven, M. A. (2003). Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol.15, 31-39.

Orth, J. D., Krueger, E. W., Cao, H. and McNiven, M. A. (2002). The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl. Acad. Sci. USA99, 167-172.

Plomann, M., Lange, R., Vopper, G., Cremer, H., Heinlein, U. A. O., Scheff, S., Baldwin, S. A., Leitges, M., Cramer, M., Paulsson, M. et al. (1998). PACSIN, a brain protein that is upregulated upon differentiation into neuronal cells. Eur. J. Biochem.256, 201-211.

Qualmann, B. and Kelly, R. B. (2000). Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol.148, 1047-1061.

Qualmann, B. and Kessels, M. M. (2002). Endocytosis and the cytoskeleton. Int. Rev. Cytol.220, 93-144.

Qualmann, B., Roos, J., DiGregorio, P. J. and Kelly, R. B. (1999). Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol. Cell10, 501-513.

Qualmann, B., Gundelfinger, E. D. and Kessels, M. M. (2000a). Regulated function of syndapins at the interconnection of endocytosis, cytoskeletal dynamics and signal transduction. Mol. Biol. Cell11, 216a (Abstr.).

Qualmann, B., Kessels, M. M. and Kelly, R. B. (2000b). Molecular links between endocytosis and the actin cytoskeleton. J. Cell Biol.150, F111-F116.

Ritter, B., Modregger, J., Paulsson, M. and Plomann, M. (1999). PACSIN 2, a novel member of the PACSIN family of cytoplasmic adapter proteins. FEBS Lett.454, 356-362.

Schlöndorff, J. and Blobel, C. P. (1999). Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J. Cell Sci.112, 3603-3617.

Scita, G., Nordstrom, J., Carbone, R., Tenca, P., Giardina, G., Gutkind, S., Bjarnegård, M., Betsholtz, C. and di Fiore, P. P. (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature401, 290-293.

Sever, S., Damke, H. and Schmid, S. L. (2000). Garrotes, springs, ratchets, and whips: putting dynamin models to the test. Traffic1, 385-392.

Simpson, F., Hussain, N. K., Qualmann, B., Kelly, R. B., Kay, B. K., McPherson, P. S. and Schmid, S. L. (1999). SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat. Cell Biol.1, 119-124.

Stamnes, M. (2002). Regulating the actin cytoskeleton during vesicular transport. Curr. Opin. Cell Biol.14, 428-433.

Sumoy, L., Pluvinet, R., Andreu, N., Estivill, X. and Escarceller, M. (2001). PACSIN 3 is a novel SH3 domain cytoplasmic adapter protein of the pacsin-syndapin-FAP52 gene family. Gene262, 199-205.

Taunton, J. (2001). Actin filament nucleation by endosomes, lysosomes and secretory vesicles. Curr. Opin. Cell Biol.13, 85-91.

Valderrama, F., Babià, T., Ayala, I., Kok, J. W., Renau-Piqueras, J. and Egea, G. (1998). Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur. J. Cell Biol.76, 9-17.

Valderrama, F., Durán, J. M., Babià, T., Barth, H., Renau-Piqueras, J. and Egea, G. (2001). Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells. Traffic2, 717-726.

Wasiak, S., Quinn, C. C., Ritter, B., de Heuvel, E., Baranes, D., Plomann, M. and McPherson, P. S. (2001). The Ras/Rac guanine nucleotide exchange factor mSos interacts with PACSIN 1/syndapin I, a regulator of endocytosis and the actin cytoskeleton. J. Biol. Chem.276, 26622-26628.

Welch, M. D. and Mullins, R. D. (2002). Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol.18, 247-288.

Zhang, J., Shehabeldin, A., da Cruz, L. A. G., Butler, J., Somani, A. K., McGavin, M., Kozieradzki, I., dos Santos, A. O., Nagy, A., Grinstein, S. et al. (1999). Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J. Exp. Med.190, 1329-1342.