The sympathetic control of blood pressure
Tóm tắt
Từ khóa
Tài liệu tham khảo
Blessing, W. W. in The Lower Brainstem and Bodily Homeostasis 165–268 (Oxford Univ. Press, New York, 1997). Provides a rare comprehensive and insightful overview of the neural control of circulation with emphasis on the brainstem.
Loewy, A. D. & Spyer, K. M. Central Regulation of Autonomic Functions (Oxford Univ. Press, New York, 1990).
Saper, C. B. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25, 433–469 (2002). Examines the control of BP in the more general context of the generation of autonomic patterns.
Morrison, S. F. Central pathways controlling brown adipose tissue thermogenesis. News Physiol. Sci. 19, 67–74 (2004).
Westerhaus, M. J. & Loewy, A. D. Central representation of the sympathetic nervous system in the cerebral cortex. Brain Res. 903, 117–127 (2001).
Madden, C. J. & Sved, A. F. Cardiovascular regulation after destruction of the C1 cell group of the rostral ventrolateral medulla in rats. Am. J. Physiol. Heart Circ. Physiol. 285, H2734–H2748 (2003).
Kishi, T. et al. Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension 38, 896–901 (2001). This important paper demonstrates that sustained changes in BP can be produced by altering the activity of relatively few neurons in the RVLM, which is strong evidence that the brain controls the 24-h average BP, presumably through the sympathetic nerves.
Morimoto, S. et al. Elevated blood pressure in transgenic mice with brain-specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter. Circ. Res. 89, 365–372 (2001). Suggests that hypertension can be produced by upregulation of the renin–angiotensin system. This shows that the kidneys and vasculature cannot compensate for a brain defect and, therefore, that these organs cannot be the sole regulators of long-term BP, as is often stated.
DiBona, G. F. & Kopp, U. C. Neural control of renal function. Physiol. Rev. 77, 75–197 (1997). Comprehensive, analytical review of the neural control of the kidney in health and disease, notably hypertension. The review argues strongly in favour of the role of renal sympathetic nerves in regulating the BP set-point.
Jacob, F., Clark, L. A., Guzman, P. A. & Osborn, J. W. Role of renal nerves in development of hypertension in DOCA-salt model in rats: a telemetric approach. Am. J. Physiol. Heart Circ. Physiol. 289, H1519–H1529 (2005).
Osborn, J. W. Hypothesis: set-points and long-term control of arterial pressure. A theoretical argument for a long-term arterial pressure control system in the brain rather than the kidney. Clin. Exp. Pharmacol. Physiol. 32, 384–393 (2005).
Guyton, A. C. Blood pressure control — special role of the kidneys and body fluids. Science 252, 1813–1816 (1991). Essential reading to understand how the kidneys contribute to the long-term regulation of BP by adjusting sodium excretion.
Schlaich, M. P. et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension 43, 169–175 (2004).
Hoffman, B. B. in Goodman and Gilman's The Pharmacological Basis of Therapeutics (eds Brunton, L. L., Lazo, J. S. & Parker, K. L.) 845–868 (McGraw-Hill, New York, 2006).
Barrett, C. J., Navakatikyan, M. A. & Malpas, S. C. Long-term control of renal blood flow: what is the role of the renal nerves? Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1534–R1545 (2001).
Dampney, R. A. et al. Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin. Exp. Pharmacol. Physiol. 32, 419–425 (2005).
Lohmeier, T. E. The sympathetic nervous system and long-term blood pressure regulation. Am. J. Hypertens. 14, S147–S154 (2001).
Janig, W. & Habler, H. J. Neurophysiological analysis of target-related sympathetic pathways — from animal to human: similarities and differences. Acta Physiol. Scand. 177, 255–274 (2003).
Blessing, W. W. & Nalivaiko, E. Regional blood flow and nociceptive stimuli in rabbits: patterning by medullary raphe, not ventrolateral medulla. J. Physiol. (Lond.) 524, 279–292 (2000). Indicates that the RVLM is involved to only a slight extent in regulating blood flow to the skin, shaping the current belief that the RVLM selectively regulates the sympathetic efferents that are under arterial baroreceptor control and that the RVLM is important for cardiorespiratory integration and BP control.
Vallbo, A. B., Hagbarth, K. E. & Wallin, B. G. Microneurography: how the technique developed and its role in the investigation of the sympathetic nervous system. J. Appl. Physiol. 96, 1262–1269 (2004).
Cao, W. H. & Morrison, S. F. Differential chemoreceptor reflex responses of adrenal preganglionic neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1825–R1832 (2001).
Dempsey, J. A., Sheel, A. W., St Croix, C. M. & Morgan, B. J. Respiratory influences on sympathetic vasomotor outflow in humans. Respir. Physiol. Neurobiol. 130, 3–20 (2002).
Dampney, R. A. L. et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin. Exp. Pharmacol. Physiol. 29, 261–268 (2002).
Sinoway, L. I. & Li, J. A perspective on the muscle reflex: implications for congestive heart failure. J. Appl. Physiol. 99, 5–22 (2005).
Guo, Z. L., Lai, H. C. & Longhurst, J. C. Medullary pathways involved in cardiac sympathoexcitatory reflexes in the cat. Brain Res. 925, 55–66 (2002).
Coote, J. H. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp. Physiol. 90, 169–173 (2005).
Ramchandra, R., Barrett, C. J., Guild, S. J. & Malpas, S. C. Evidence of differential control of renal and lumbar sympathetic nerve activity in conscious rabbits. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R701–R708 (2006).
Sved, A. F., Cano, G. & Card, J. P. Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clin. Exp. Pharmacol. Physiol. 28, 115–119 (2001).
Guyenet, P. G., Stornetta, R. L., Weston, M. C., McQuiston, T. & Simmons, J. R. Detection of amino acid and peptide transmitters in physiologically identified brainstem cardiorespiratory neurons. Auton. Neurosci. 114, 1–10 (2004).
Jansen, A. S. P., Nguyen, X. V., Karpitskiy, V., Mettenleiter, T. C. & Loewy, A. D. Central command neurons of the sympathetic nervous system: basis of the fight or flight response. Science 270, 644–646 (1995). Illustrates the use of the pseudorabies virus in tracking the CNS networks that regulate the sympathetic nervous system. This particular paper argues that the RVLM contains neurons that innervate many types of sympathetic efferent, which is a conclusion that goes against a strict organotopic arrangement of RVLM barosensitive neurons.
Ritter, S., Bugarith, K. & Dinh, T. T. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J. Comp. Neurol. 432, 197–216 (2001).
Hokfelt, T., Fuxe, K., Goldstein, M. & Johansson, O. Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res. 66, 235–251 (1974).
Ross, C. A. et al. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J. Neurosci. 4, 474–494 (1984). An influential paper that definitively established the pivotal role of the RVLM in controlling BP and gave strong support to the idea that the C1 cells are a crucial component of the network that regulates BP.
Brown, D. L. & Guyenet, P. G. Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ. Res. 56, 359–369 (1985).
Guyenet, P. G. & Stornetta, R. L. in Neural Mechanisms of Cardiovascular Regulation (eds Dun, N. J., Machado, B. H. & Pilowsky, P. M.) 187–218 (Kluwer, Boston, Massachusetts, 2004).
Sun, M. K. Pharmacology of reticulospinal vasomotor neurons in cardiovascular regulation. Pharmacol. Rev. 48, 465–494 (1996).
Schreihofer, A. M. & Guyenet, P. G. Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J. Comp. Neurol. 387, 524–536 (1997).
Schreihofer, A. M., Stornetta, R. L. & Guyenet, P. G. Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. J. Physiol. (Lond.) 529, 221–236 (2000).
Verberne, A. J. M., Stornetta, R. L. & Guyenet, P. G. Properties of C1 and other ventrolateral medullary neurones with hypothalamic projections in the rat. J. Physiol. (Lond.) 517, 477–494 (1999).
Ericsson, A., Arias, C. & Sawchenko, P. E. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. J. Neurosci. 17, 7166–7179 (1997).
Dampney, R. A. et al. Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiol. Scand. 177, 209–218 (2003).
Brooks, V. L., Freeman, K. L. & Clow, K. A. Excitatory amino acids in rostral ventrolateral medulla support blood pressure during water deprivation in rats. Am. J. Physiol. Heart Circ. Physiol. 286, H1642–H1648 (2004).
Guyenet, P. G. Neural structures that mediate sympathoexcitation during hypoxia. Respir. Physiol. 121, 147–162 (2000).
Kangrga, I. M. & Loewy, A. D. Whole-cell recordings from visualized C1 adrenergic bulbospinal neurons: ionic mechanisms underlying vasomotor tone. Brain Res. 670, 215–232 (1995). Suggests that the C1 neurons have intrinsic beating properties that are driven, in part, by a persistent sodium current in brain slices. The observation is consistent with the possibility that a portion of the vasomotor tone derives from these intrinsic properties.
Lipski, J., Kawai, Y., Qi, J., Comer, A. & Win, J. Whole cell patch-clamp study of putative vasomotor neurons isolated from the rostral ventrolateral medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 274, R1099–R1110 (1998).
Li, Y. W. & Guyenet, P. G. Neuronal excitation by angiotensin II in the rostral ventrolateral medulla of the rat in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 268, R272–R277 (1995).
Gomez, R. E. et al. Vasopressinergic mechanisms in the nucleus reticularis lateralis in blood pressure control. Brain Res. 604, 90–105 (1993).
Milner, T. A., Reis, D. J., Pickel, V. M., Aicher, S. A. & Giuliano, R. Ultrastructural localization and afferent sources of corticotropin-releasing factor in the rat rostral ventrolateral medulla: implications for central cardiovascular regulation. J. Comp. Neurol. 333, 151–167 (1993).
Allen, A. M. Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension 39, 275–280 (2002).
Schreihofer, A. M. & Guyenet, P. G. Baroactivated neurons with pulse-modulated activity in the rat caudal ventrolateral medulla express GAD67 mRNA. J. Neurophysiol. 89, 1265–1277 (2003).
Horiuchi, J. & Dampney, R. A. Evidence for tonic disinhibition of RVLM sympathoexcitatory neurons from the caudal pressor area. Auton. Neurosci. 99, 102–110 (2002).
Verberne, A. J. M., Sartor, D. M. & Berke, A. Midline medullary depressor responses are mediated by inhibition of RVLM sympathoexcitatory neurons in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276, R1054–R1062 (1999).
Barman, S. M., Gebber, G. L. & Orer, H. S. Medullary lateral tegmental field: an important source of basal sympathetic nerve discharge in the cat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R995–R1004 (2000).
Makeham, J. M., Goodchild, A. K. & Pilowsky, P. M. NK1 receptor activation in rat rostral ventrolateral medulla selectively attenuates somato-sympathetic reflex while antagonism attenuates sympathetic chemoreflex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1707–R1715 (2005).
Campos, R. R. & McAllen, R. M. Cardiac sympathetic premotor neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 272, R615–R620 (1997).
McAllen, R. M., May, C. N. & Shafton, A. D. Functional anatomy of sympathetic premotor cell groups in the medulla. Clin. Exp. Hypertens. 17, 209–221 (1995).
McAllen, R. M. & Dampney, R. A. Vasomotor neurons in the rostral ventrolateral medulla are organized topographically with respect to type of vascular bed but not body region. Neurosci. Lett. 110, 91–96 (1990).
Stornetta, R. L., McQuiston, T. J. & Guyenet, P. G. GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridization. J. Comp. Neurol. 479, 257–270 (2004).
Kerman, I. A., Enquist, L. W., Watson, S. J. & Yates, B. J. Brainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants. J. Neurosci. 23, 4657–4666 (2003).
Sartor, D. M. & Verberne, A. J. Cholecystokinin selectively affects presympathetic vasomotor neurons and sympathetic vasomotor outflow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1174–R1184 (2002).
Haselton, J. R. & Guyenet, P. G. Central respiratory modulation of medullary sympathoexcitatory neurons in rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 256, R739–R750 (1989).
Kishi, T. et al. Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension 39, 264–268 (2002).
Sved, A. F., Ito, S. & Sved, J. C. Brainstem mechanisms of hypertension: role of the rostral ventrolateral medulla. Curr. Hypertens. Rep. 5, 262–268 (2003).
Ding, Z. Q., Li, Y. W., Wesselingh, S. L. & Blessing, W. W. Transneuronal labelling of neurons in rabbit brain after injection of Herpes simplex virus type-1 into the renal nerve. J. Auton. Nerv. Syst. 42, 23–32 (1993).
Dean, C., Seagard, J. L., Hopp, F. A. & Kampine, J. P. Differential control of sympathetic activity to kidney and skeletal muscle by ventral medullary neurons. J. Auton. Nerv. Syst. 37, 1–10 (1992).
Akine, A., Montanaro, M. & Allen, A. M. Hypothalamic paraventricular nucleus inhibition decreases renal sympathetic nerve activity in hypertensive and normotensive rats. Auton. Neurosci. 108, 17–21 (2003).
Ito, S. et al. Ventrolateral medulla AT1 receptors support arterial pressure in Dahl salt-sensitive rats. Hypertension 41, 744–750 (2003).
Reja, V., Goodchild, A. K. & Pilowsky, P. M. Catecholamine-related gene expression correlates with blood pressures in SHR. Hypertension 40, 342–347 (2002).
Reja, V., Goodchild, A. K., Phillips, J. K. & Pilowsky, P. M. Tyrosine hydroxylase gene expression in ventrolateral medulla oblongata of WKY and SHR: a quantitative real-time polymerase chain reaction study. Auton. Neurosci. 98, 79–84 (2002).
Potts, J. T. et al. Contraction-sensitive skeletal muscle afferents inhibit arterial baroreceptor signalling in the nucleus of the solitary tract: role of intrinsic GABA interneurons. Neuroscience 119, 201–214 (2003).
Schreihofer, A. M. & Guyenet, P. G. The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin. Exp. Pharmacol. Physiol. 29, 514–521 (2002).
Pilowsky, P. M. & Goodchild, A. K. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J. Hypertens. 20, 1675–1688 (2002).
Andresen, M. C., Doyle, M. W., Jin, Y. H. & Bailey, T. W. Cellular mechanisms of baroreceptor integration at the nucleus tractus solitarius. Ann. NY Acad. Sci. 940, 132–141 (2001).
Paton, J. F. et al. Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J. Physiol. (Lond.) 531, 2–58 (2001).
Paton, J. F., Boscan, P., Murphy, D. & Kasparov, S. Unravelling mechanisms of action of angiotensin II on cardiorespiratory function using in vivo gene transfer. Acta Physiol. Scand. 173, 127–137 (2001).
Osborn, J. W., Jacob, F. & Guzman, P. A neural set point for the long-term control of arterial pressure: beyond the arterial baroreceptor reflex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R846–R855 (2005).
Thrasher, T. N. Baroreceptors, baroreceptor unloading, and the long-term control of blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R819–R827 (2005).
Schreihofer, A. M., Ito, S. & Sved, A. F. Brain stem control of arterial pressure in chronic arterial baroreceptor denervated rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1746–R1755 (2005).
Brooks, V. L., Haywood, J. R. & Johnson, A. K. Translation of salt retention to central activation of the sympathetic nervous system in hypertension. Clin. Exp. Pharmacol. Physiol. 32, 426–432 (2005). Interesting paper that describes potential CNS mechanisms of salt-dependent hypertension.
Kawano, H. & Masuko, S. Synaptic contacts between nerve terminals originating from the ventrolateral medullary catecholaminergic area and median preoptic neurons projecting to the paraventricular hypothalamic nucleus. Brain Res. 817, 110–116 (1999).
McKinley, M. J. et al. Neural pathways from the lamina terminalis influencing cardiovascular and body fluid homeostasis. Clin. Exp. Pharmacol. Physiol. 28, 990–992 (2001).
Babic, T., Roder, S. & Ciriello, J. Direct projections from caudal ventrolateral medullary depressor sites to the subfornical organ. Brain Res. 1003, 113–121 (2004).
Wolk, R., Shamsuzzaman, A. S. M. & Somers, V. K. Obesity, sleep apnea, and hypertension. Hypertension 42, 1067–1074 (2003).
Blessing, W. W., Yu, Y. H. & Nalivaiko, E. Medullary projections of rabbit carotid sinus nerve. Brain Res. 816, 405–410 (1999).
Paton, J. F. R., Deuchars, J., Li, Y. W. & Kasparov, S. Properties of solitary tract neurones responding to peripheral arterial chemoreceptors. Neuroscience 105, 231–248 (2001).
Prabhakar, N. R., Peng, Y. J., Jacono, F. J., Kumar, G. K. & Dick, T. E. Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin. Exp. Pharmacol. Physiol. 32, 447–449 (2005). The authors suggest that changes in the discharge characteristics of peripheral chemoreceptors at rest and in response to hypoxia could contribute to the development of hypertension associated with increased sympathetic tone caused by obstructive sleep apnoea.
Roux, J. C. et al. O2-sensing after carotid chemodenervation: hypoxic ventilatory responsiveness and upregulation of tyrosine hydroxylase mRNA in brainstem catecholaminergic cells. Eur. J. Neurosci. 12, 3181–3190 (2000).
Pascual, O. et al. Selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1α (HIF-1α) under in vivo hypoxia in rat brainstem. Eur. J. Neurosci. 14, 1981–1991 (2001).
Reis, D. J., Golanov, E. V., Galea, E. & Feinstein, D. L. Central neurogenic neuroprotection: central neural systems that protect the brain from hypoxia and ischemia. Ann. NY Acad. Sci. 835, 168–186 (1997). The authors postulate that the brain could protect itself from hypoxia by elevating BP via increases in SNA. They also propose that the C1 neurons potentially have a central role in this process.
Levy, E. I., Scarrow, A. M. & Jannetta, P. J. Microvascular decompression in the treatment of hypertension: review and update. Surg. Neurol. 55, 2–10 (2001).
Dimicco, J. A., Samuels, B. C., Zaretskaia, M. V. & Zaretsky, D. V. The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol. Biochem. Behav. 71, 469–480 (2002).
Benarroch, E. E. Paraventricular nucleus, stress response, and cardiovascular disease. Clin. Auton. Res. 15, 254–263 (2005).
Stocker, S. D., Simmons, J. R., Stornetta, R. L., Toney, G. M. & Guyenet, P. G. Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla. J. Comp. Neurol. 494, 673–685 (2006).
Shafton, A. D., Ryan, A., McGrath, B. & Badoer, E. Volume expansion does not activate neuronal projections from the NTS or depressor VLM to the RVLM. Am. J. Physiol. Regul. Integr. Comp. Physiol. 277, R39–R46 (1999).
Haselton, J. R., Goering, J. & Patel, K. P. Parvocellular neurons of the paraventricular nucleus are involved in the reduction in renal nerve discharge during isotonic volume expansion. J. Auton. Nerv. Syst. 50, 1–12 (1994).
Weiss, M. L., Claassen, D. E., Hirai, T. & Kenney, M. J. Nonuniform sympathetic nerve responses to intravenous hypertonic saline infusion. J. Auton. Nerv. Syst. 57, 109–115 (1996).
Morita, H., Nishida, Y. & Hosomi, H. Neural control of urinary sodium excretion during hypertonic NaCl load in conscious rabbits: role of renal and hepatic nerves and baroreceptors. J. Auton. Nerv. Syst. 34, 157–169 (1991).
Badoer, E., Ng, C. W. & De, M. R. Glutamatergic input in the PVN is important in renal nerve response to elevations in osmolality. Am. J. Physiol. Renal Physiol. 285, F640–F650 (2003).
Stocker, S. D., Hunwick, K. J. & Toney, G. M. Hypothalamic paraventricular nucleus differentially supports lumbar and renal sympathetic outflow in water-deprived rats. J. Physiol. (Lond.) 563, 249–263 (2005).
Brooks, V. L., Freeman, K. L. & O'Donaughy, T. L. Acute and chronic increases in osmolality increase excitatory amino acid drive of the rostral ventrolateral medulla in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1359–R1368 (2004).
Grob, M., Drolet, G. & Mouginot, D. Specific Na+ sensors are functionally expressed in a neuronal population of the median preoptic nucleus of the rat. J. Neurosci. 24, 3974–3984 (2004).
O'Donaughy, T. L. & Brooks, V. L. Deoxycorticosterone acetate-salt rats. Hypertension and sympathoexcitation driven by increased NaCl levels. Hypertension 47, 680–685 (2006).
Geerling, J. C., Engeland, W. C., Kawata, M. & Loewy, A. D. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J. Neurosci. 26, 411–417 (2006). Provides the first definitive identification of brain neurons that are capable of detecting the circulating level of mineralocorticoid selectively. The study shows that the activity of these neurons correlates with sodium appetite.
Zimmerman, M. C., Lazartigues, E., Sharma, R. V. & Davisson, R. L. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ. Res. 95, 210–216 (2004).
Kishi, T. et al. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation 109, 2357–2362 (2004).
Smith, O. A., DeVito, J. L. & Astley, C. A. Neurons controlling cardiovascular responses to emotion are located in lateral hypothalamus-perifornical region. Am. J. Physiol. Regul. Integr. Comp. Physiol. 259, R943–R954 (1990).
Lovick, T. A. The periaqueductal gray–rostral medulla connection in the defense reaction: efferent pathways and descending control mechanisms. Behav. Brain Res. 58, 19–25 (1993).
Bandler, R., Carrive, P. & Zhang, S. P. Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: viscerotopic, somatotopic and functional organization. Prog. Brain Res. 87, 269–305 (1991).
Esler, M. & Kaye, D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J. Cardiovasc. Pharmacol. 35, S1–S7 (2000). This important paper documents a generalized increase in sympathetic tone in various forms of hypertension.
Lambert, G. W. et al. Increased central nervous system monoamine neurotransmitter turnover and its association with sympathetic nervous activity in treated heart failure patients. Circulation 92, 1813–1818 (1995).
Felder, R. B. et al. Heart failure and the brain: new perspectives. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R259–R276 (2003).
Huang, B. S. & Leenen, F. H. Blockade of brain mineralocorticoid receptors or Na+ channels prevents sympathetic hyperactivity and improves cardiac function in rats post-MI. Am. J. Physiol. Heart Circ. Physiol. 288, H2491–H2497 (2005).
Zhang, W. G., Huang, B. S. & Leenen, F. H. H. Brain renin–angiotensin system and sympathetic hyperactivity in rats after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 276, H1608–H1615 (1999).
Hamlyn, J. M., Hamilton, B. P. & Manunta, P. Endogenous ouabain, sodium balance and blood pressure: a review and a hypothesis. J. Hypertens. 14, 151–167 (1996).
Weiss, M. L., Kenney, M. J., Musch, T. I. & Patel, K. P. Modifications to central neural circuitry during heart failure. Acta Physiol. Scand. 177, 57–67 (2003).
Francis, J., Wei, S. G., Weiss, R. M. & Felder, R. B. Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure. Am. J. Physiol. Heart Circ. Physiol. 287, H2138–H2146 (2004).
Lindley, T. E., Doobay, M. F., Sharma, R. V. & Davisson, R. L. Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction-induced heart failure. Circ. Res. 94, 402–409 (2004).