The subcommissural organ of the rat secretes Reissner's fiber glycoproteins and CSF-soluble proteins reaching the internal and external CSF compartments
Tóm tắt
The subcommissural organ (SCO) is a highly conserved brain gland present throughout the vertebrate phylum; it secretes glycoproteins into the cerebrospinal fluid (CSF), where they aggregate to form Reissner's fiber (RF). SCO-spondin is the major constituent protein of RF. Evidence exists that the SCO also secretes proteins that remain soluble in the CSF. The aims of the present investigation were: (i) to identify and partially characterize the SCO-secretory compounds present in the SCO gland itself and in the RF of the Sprague-Dawley rat and non-hydrocephalic hyh mouse, and in the CSF of rat; (ii) to make a comparative analysis of the proteins present in these three compartments; (iii) to identify the proteins secreted by the SCO into the CSF at different developmental periods.
The proteins of the SCO secreted into the CSF were studied (i) by injecting specific antibodies into ventricular CSF
Five glycoproteins were identified in the rat SCO with apparent molecular weights of 630, 450, 390, 320 and 200 kDa. With the exception of the 200-kDa compound, all other compounds present in the rat SCO were also present in the mouse SCO. The 630 and 390 kDa compounds of the rat SCO have affinity for concanavalin A but not for wheat germ agglutinin, suggesting that they correspond to precursor forms. Four of the AFRU-immunoreactive compounds present in the SCO (630, 450, 390, 320 kDa) were absent from the RF and CSF. These may be precursor and/or partially processed forms. Two other compounds (200, 63 kDa) were present in SCO, RF and CSF and may be processed forms. The presence of these proteins in both, RF and CSF suggests a steady-state RF/CSF equilibrium for these compounds. Eight AFRU-immunoreactive bands were consistently found in CSF samples from rats at E18, E20 and PN1. Only four of these compounds were detected in the cisternal CSF of PN30 rats. The 200 kDa compound appears to be a key compound in rats since it was consistently found in all samples of SCO, RF and embryonic and juvenile CSF.
It is concluded that (i) during the late embryonic life, the rat SCO secretes compounds that remain soluble in the CSF and reach the subarachnoid space; (ii) during postnatal life, there is a reduction in the number and concentration of CSF-soluble proteins secreted by the SCO. The molecular structure and functional significance of these proteins remain to be elucidated. The possibility they are involved in brain development has been discussed.
Từ khóa
Tài liệu tham khảo
Schoebitz K, Rodriguez EM, Garrido O, Del Brio Leon MA: Ontogenetic development of the subcommissural organ with reference to the flexural organ. The Subcommissural Organ An Ependymal Brain Gland. Edited by: Oksche A, Rodriguez EM, Fernandez-Llebrez P. 1993, Berlin, Heidelberg, New York: Springer, 41-49.
Rodriguez EM, Oksche A, Montecinos H: Human subcommissural organ, with particular emphasis on its secretory activity during the fetal life. Microsc Res Tech. 2001, 52: 573-590. 10.1002/1097-0029(20010301)52:5<573::AID-JEMT1042>3.0.CO;2-6.
Reissner E: Beiträge zur Kenntnis vom Bau des Rüchenmarks von Petromyzon fluviatilis L. Arch anat physiol. 1860, 77: 545-588.
Rodriguez EM, Oksche A, Hein S, Yulis CR: Cell biology of the subcommissural organ. Int Rev Cytol. 1992, 135: 39-121.
Rodriguez EM, Rodriguez S, Hein S: The subcommissural organ. Microsc Res Tech. 1998, 41: 98-123. 10.1002/(SICI)1097-0029(19980415)41:2<98::AID-JEMT2>3.0.CO;2-M.
Peruzzo B, Rodriguez S, Delannoy L, Hein S, Rodriguez EM, Oksche A: Ultrastructural immunocytochemical study of the massa caudalis of the subcommissural organ-Reissner's fiber complex in lamprey larvae (Geotria australis): evidence for a terminal vascular route of secretory material. Cell Tissue Res. 1987, 247: 367-376. 10.1007/BF00218318.
Rodriguez S, Rodriguez PA, Bance P, Rodriguez EM, Oksche A: Reissner's fiber, massa caudalis and ampulla caudalis in the spinal cord of lamprey larvae (Geotria australis). Light-microscopic immunocytochemical and lectin-histochemical studies. Cell Tissue Res. 1987, 247: 359-366. 10.1007/BF00218317.
Caprile T, Hein S, Rodriguez S, Montecinos H, Rodriguez E: Reissner fiber binds and transports away monoamines present in the cerebrospinal fluid. Brain Res Mol Brain Res. 2003, 110: 177-192. 10.1016/S0169-328X(02)00565-X.
Rodriguez S, Vio K, Wagner C, Barria M, Navarrete EH, Ramirez VD, Perez-Figares JM, Rodriguez EM: Changes in the cerebrospinal-fluid monoamines in rats with an immunoneutralization of the subcommissural organ-Reissner's fiber complex by maternal delivery of antibodies. Exp Brain Res. 1999, 128: 278-290. 10.1007/s002210050848.
Hein S, Nualart F, Rodriguez EM, Oksche A: Partial characterization of the secretory products of the subcommisural organ. The Subcommissural Organ An Ependymal Brain Gland. Edited by: Oksche A, Rodriguez EM, Fernandez-Llebrez P. 1993, Berlin, Heidelberg, New York: Springer, 78-88.
Nualart F, Hein S: Biosynthesis and molecular biology of the secretory proteins of the subcommissural organ. Microsc Res Tech. 2001, 52: 468-483. 10.1002/1097-0029(20010301)52:5<468::AID-JEMT1033>3.0.CO;2-U.
Nualart F, Hein S, Rodriguez EM, Oksche A: Identification and partial characterization of the secretory glycoproteins of the bovine subcommissural organ-Reissner's fiber complex. Evidence for the existence of two precursor forms. Brain Res Mol Brain Res. 1991, 11: 227-238. 10.1016/0169-328X(91)90031-R.
del Brio MA, Riera P, Munoz RI, Montecinos H, Rodriguez EM: The metencephalic floor plate of chick embryos expresses two secretory glycoproteins homologous with the two glycoproteins secreted by the subcommissural organ. Histochem Cell Biol. 2000, 113: 415-426.
Lopez-Avalos MD, Perez J, Perez-Figares JM, Peruzzo B, Grondona JM, Rodriguez EM: Secretory glycoproteins of the subcommissural organ of the dogfish (Scyliorhinus canicula): evidence for the existence of precursor and processed forms. Cell Tissue Res. 1996, 283: 75-84. 10.1007/s004410050514.
Schoebitz K, Garrido O, Heinrichs M, Speer L, Rodriguez EM: Ontogenetical development of the chick and duck subcommissural organ. An immunocytochemical study. Histochemistry. 1986, 84: 31-40. 10.1007/BF00493417.
Rodriguez EM, Jara P, Richter H, Montecinos H, Flandes B, Wiegand R, Oksche A: Evidence for the release of CSF-soluble secretory material from the subcommissural organ, with particular reference to the situation in the human. The Subcommissural Organ An Ependymal Brain Gland. Edited by: Oksche A, Rodriguez EM, Fernandez-Llebrez P. 1993, Berlin, Heidelberg, New York: Springer, 121-131.
Hoyo-Becerra C, Lopez-Avalos MD, Perez J, Miranda E, Rojas-Rios P, Fernandez-Llebrez P, Grondona JM: Continuous delivery of a monoclonal antibody against Reissner's fiber into CSF reveals CSF-soluble material immunorelated to the subcommissural organ in early chick embryos. Cell Tissue Res. 2006, 326: 771-786. 10.1007/s00441-006-0231-3.
Estivill-Torrus G, Cifuentes M, Grondona JM, Miranda E, Bermudez-Silva FJ, Fernandez-Llebrez P, Perez J: Quantification of the secretory glycoproteins of the subcommissural organ by a sensitive sandwich ELISA with a polyclonal antibody and a set of monoclonal antibodies against the bovine Reissner's fiber. Cell Tissue Res. 1998, 294: 407-413. 10.1007/s004410051191.
Fernandez-Llebrez P, Miranda E, Estivill-Torrus G, Cifuentes M, Grondona JM, Lopez-Avalos MD, Perez-Martin M, Perez J: Analysis and quantification of the secretory products of the subcommissural organ by use of monoclonal antibodies. Microsc Res Tech. 2001, 52: 510-519. 10.1002/1097-0029(20010301)52:5<510::AID-JEMT1036>3.0.CO;2-A.
Gobron S, Creveaux I, Meiniel R, Didier R, Herbet A, Bamdad M, El Bitar F, Dastugue B, Meiniel A: Subcommissural organ/Reissner's fiber complex: characterization of SCO-spondin, a glycoprotein with potent activity on neurite outgrowth. Glia. 2000, 32: 177-191. 10.1002/1098-1136(200011)32:2<177::AID-GLIA70>3.0.CO;2-V.
Meiniel A: SCO-spondin, a glycoprotein of the subcommissural organ/Reissner's fiber complex: evidence of a potent activity on neuronal development in primary cell cultures. Microsc Res Tech. 2001, 52: 484-495. 10.1002/1097-0029(20010301)52:5<484::AID-JEMT1034>3.0.CO;2-0.
Adams JC, Tucker RP: The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev Dyn. 2000, 218: 280-299. 10.1002/(SICI)1097-0177(200006)218:2<280::AID-DVDY4>3.0.CO;2-0.
Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG: The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem. 1970, 18: 315-333.
Rodriguez EM, Oksche A, Hein S, Rodriguez S, Yulis R: Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res. 1984, 237: 427-441.
Nualart F, Hein S, Yulis CR, Zarraga AM, Araya A, Rodriguez EM: Partial sequencing of Reissner's fiber glycoprotein I (RF-Gly I). Cell Tissue Res. 1998, 292: 239-250. 10.1007/s004410051055.
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979, 76: 4350-4354. 10.1073/pnas.76.9.4350.
Herrera H, Rodriguez EM: Secretory glycoproteins of the rat subcommissural organ are N-linked complex-type glycoproteins. Demonstration by combined use of lectins and specific glycosidases, and by the administration of Tunicamycin. Histochemistry. 1990, 93: 607-615. 10.1007/BF00272203.
Peruzzo B, Rodriguez EM: Light and electron microscopical demonstration of concanavalin A and wheat-germ agglutinin binding sites by use of antibodies against the lectin or its label (peroxidase). Histochemistry. 1989, 92: 505-513. 10.1007/BF00524762.
Goncalves-Mendes N, Simon-Chazottes D, Creveaux I, Meiniel A, Guenet JL, Meiniel R: Mouse SCO-spondin, a gene of the thrombospondin type 1 repeat (TSR) superfamily expressed in the brain. Gene. 2003, 312: 263-270. 10.1016/S0378-1119(03)00622-X.
Rodriguez EM, del Brio Leon MA, Riera P, Menendez J, Schoebitz K: The floor plate of the hindbrain is a highly specialized gland. Immunocytochemical and ultrastructural characteristics. Brain Res Dev Brain Res. 1996, 97: 153-168. 10.1016/S0165-3806(96)00113-7.
Guinazu MF, Richter HG, Rodriguez EM: Bovine floor plate explants secrete SCO-spondin. Cell Tissue Res. 2002, 308: 177-191. 10.1007/s00441-002-0511-5.
Meiniel A, Meiniel R, Didier R, Creveaux I, Gobron S, Monnerie H, Dastugue B: The subcommissural organ and Reissner's fiber complex. An enigma in the central nervous system?. Prog Histochem Cytochem. 1996, 30: 1-66.
Rodriguez S, Hein S, Yulis R, Delannoy L, Siegmund I, Rodriguez E: Reissner's fiber and the wall of the central canal in the lumbo-sacral region of the bovine spinal cord. Comparative immunocytochemical and ultrastructural study. Cell Tissue Res. 1985, 240: 649-662. 10.1007/BF00216353.
Rodriguez S, Rodriguez EM, Jara P, Peruzzo B, Oksche A: Single injection into the cerebrospinal fluid of antibodies against the secretory material of the subcommissural organ reversibly blocks formation of Reissner's fiber: immunocytochemical investigations in the rat. Exp Brain Res. 1990, 81: 113-124. 10.1007/BF00230107.
Olsson R: Reissner's fiber mechanisms: some common denominators. The Subcommissural Organ An Ependymal Brain Gland. Edited by: Oksche A, Rodriguez EM, Fernandez-Llebrez P. 1993, Berlin, Heidelberg, New York: Springer, 33-39.
Yulis CR, Mota MD, Andrades JA, Rodriguez S, Peruzzo B, Mancera JM, Ramirez P, Garrido M, Perez-Figarez JM, Fernandez-Llebrez P, Rodriguez EM: Floor plate and the subcommissural organ are the source of secretory compounds of related nature: comparative immunocytochemical study. J Comp Neurol. 1998, 392: 19-34. 10.1002/(SICI)1096-9861(19980302)392:1<19::AID-CNE2>3.0.CO;2-S.
Rodriguez EM, Garrido O, Oksche A: Lectin histochemistry of the human fetal subcommissural organ. Cell Tissue Res. 1990, 262: 105-113. 10.1007/BF00327751.
Richter HG, Munoz RI, Millan CS, Guinazu MF, Yulis CR, Rodriguez EM: The floor plate cells from bovines express the mRNA encoding for SCO-spondin and its translation products. Brain Res Mol Brain Res. 2001, 93: 137-147. 10.1016/S0169-328X(01)00181-4.
Owen-Lynch PJ, Draper CE, Mashayekhi F, Bannister CM, Miyan JA: Defective cell cycle control underlies abnormal cortical development in the hydrocephalic Texas rat. Brain. 2003, 126: 623-631. 10.1093/brain/awg058.
Miyan JA, Nabiyouni M, Zendah M: Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol. 2003, 81: 317-328. 10.1139/y03-027.
Rodriguez EM: The cerebrospinal fluid as a pathway in neuroendocrine integration. J Endocrinol. 1976, 71: 407-443.
Brightman MW: The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J Cell Biol. 1965, 26: 99-123. 10.1083/jcb.26.1.99.
Brightman MW, Reese TS: Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969, 40: 648-677. 10.1083/jcb.40.3.648.
Cifuentes M, Fernandez LP, Perez J, Perez-Figares JM, Rodriguez EM: Distribution of intraventricularly injected horseradish peroxidase in cerebrospinal fluid compartments of the rat spinal cord. Cell Tissue Res. 1992, 270: 485-494. 10.1007/BF00645050.
Brightman MW: The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am J Anat. 1965, 117: 193-219. 10.1002/aja.1001170204.
Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA: Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985, 326: 47-63. 10.1016/0006-8993(85)91383-6.
Pena P, Rodriguez EM, Dellmann HD, Schoebitz K: Effects of colchicine on the hypothalamo-neurohypophysial system of chronically salt-loaded rats. Neuroendocrinology. 1988, 47: 217-224.
Miyan JA, Mashayekhi F, Bannister CM: Developmental abnormalities in early-onset hydrocephalus: clues to signalling. Symp Soc Exp Biol. 2001, 91-106.
Gato A, Moro JA, Alonso MI, Bueno D, De La Mano A, Martin C: Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec A Discov Mol Cell Evol Biol. 2005, 284: 475-484.
Miyan JA, Zendah M, Mashayekhi F, Owen-Lynch PJ: Cerebrospinal fluid supports viability and proliferation of cortical cells in vitro, mirroring in vivo development. Cerebrospinal Fluid Res. 2006, 3: 2-10.1186/1743-8454-3-2.
Gonzalez C, Vio K, Muñoz RI, Rodriguez EM: The CSF of normal H-Tx rats promotes neuronal differentiation from neurospheres but CSF of hydrocephalic H-Tx rats does not. Cerebrospinal Fluid Res. 2006, 3: s10-10.1186/1743-8454-3-S1-S10.
Doublier S, Duyckaerts C, Seurin D, Binoux M: Impaired brain development and hydrocephalus in a line of transgenic mice with liver-specific expression of human insulin-like growth factor binding protein-1. Growth Horm IGF Res. 2000, 10: 267-274. 10.1054/ghir.2000.0168.
Kasaian MT, Neet KE: Nerve growth factor in human amniotic and cerebrospinal fluid. Biofactors. 1989, 2: 99-104.
Johnson MD, Gold LI, Moses HL: Evidence for transforming growth factor-beta expression in human leptomeningeal cells and transforming growth factor-beta-like activity in human cerebrospinal fluid. Lab Invest. 1992, 67: 360-368.
Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T: Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease. Neurosci Lett. 1996, 211: 13-16. 10.1016/0304-3940(96)12706-3.
Heinze E, Boker M, Blum W, Behnisch W, Schulz A, Urban J, Mauch E: GH, IGF-I, IGFBP-3 and IGFBP-2 in cerebrospinal fluid of infants, during puberty and in adults. Exp Clin Endocrinol Diabetes. 1998, 106: 197-202.
Arnold PM, Ma JY, Citron BA, Festoff BW: Insulin-like growth factor binding proteins in cerebrospinal fluid during human development and aging. Biochem Biophys Res Commun. 1999, 264: 652-656. 10.1006/bbrc.1999.1555.
Johanson CE, Szmydynger-Chodobska J, Chodobski A, Baird A, McMillan P, Stopa EG: Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Physiol. 1999, 277: R263-271.
Riikonen R, Somer M, Turpeinen U: Low insulin-like growth factor (IGF-1) in the cerebrospinal fluid of children with progressive encephalopathy, hypsarrhythmia, and optic atrophy (PEHO) syndrome and cerebellar degeneration. Epilepsia. 1999, 40: 1642-1648. 10.1111/j.1528-1157.1999.tb02051.x.
Moinuddin SM, Tada T: Study of cerebrospinal fluid flow dynamics in TGF-beta 1 induced chronic hydrocephalic mice. Neurol Res. 2000, 22: 215-222.
Montecinos HA, Richter H, Caprile T, Rodriguez EM: Synthesis of transthyretin by the ependymal cells of the subcommissural organ. Cell Tissue Res. 2005, 320: 487-499. 10.1007/s00441-004-0997-0.
Vio K, Rodriguez S, Navarrete EH, Perez-Figares JM, Jimenez AJ, Rodriguez EM: Hydrocephalus induced by immunological blockage of the subcommissural organ-Reissner's fiber (RF) complex by maternal transfer of anti-RF antibodies. Exp Brain Res. 2000, 135: 41-52. 10.1007/s002210000474.
Monnerie H, Dastugue B, Meiniel A: Effect of synthetic peptides derived from SCO-spondin conserved domains on chick cortical and spinal-cord neurons in cell cultures. Cell Tissue Res. 1998, 293: 407-418. 10.1007/s004410051132.
Rice DS, Curran T: Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci. 2001, 24: 1005-1039. 10.1146/annurev.neuro.24.1.1005.
Gonzalez C: Participación del órgano subcomisural y el líquido cefalorraquídeo en la neurogénesis postnatal. PhD Thesis. 2007, Universidad Austral de Chile, Institute of Anatomy, Histology and Pathology, Faculty of Medicine