The study of angular distance distribution to the solar flares during different solar cycles

Ramy Mawad

Tóm tắt

AbstractThe angular distance of the solar flares to the projective point of the center of the solar disk on the solar spherical surface has been studied by the heliographical or helioprojective coordinates, during the periods 1975–2021 for GOES events and 2002–2021 for RHESSI events, hereafter “distance.” It gives a specific distribution curvature. It has also been noted that when using the number of solar flare events in each satellite, GOES or RHESSI, or even using the sum of the flux (class) or importance parameter, it obtains the same result, which is that the shape of the distribution curve remains in its shape without any significant change. In addition, it has been shown that the distribution curve contains a specific number of peaks. These peaks have a specific distance from the center of the solar disk that is very similar to the projection of the solar interior layers on the solar disk. For this reason, the names of these four main peaks have been given as follows: (1) the core circle (0–15°): it is a projection of the solar core onto the solar disk, (2) radiative ring (15–45°), and (3) the convection ring (45–55°). The limb ring is 80–90°. This result makes us wonder why the number of events in the middle of the solar disk is few, and also small at the solar limb, while many in the other parts in the solar disk. This suggests that we need to understand the sun better than before, and it also suggests that solar flares are connected to each other through the solar interior layers, the extent of which may reach the convection zone or perhaps beyond that, or the opacity of the convection zone may be less than the currently estimated value.

Từ khóa


Tài liệu tham khảo

M.N. Gnevyshev, On the 11-years cycle of solar activity. Sol. Phys. 1, 107–120 (1967). https://doi.org/10.1007/BF00150306

P.K. Shrivastava, N. Singh, Latitudinal distribution of solar flares and their association with coronal mass ejections. Chinese JAstronomy Astrophysics 2, 198–2025 (2005)

V.V. Zharkova,  S.I. Zharkov,  in Latitudinal and longitudinal distributions of sunspots and solar flare occurrence in the cycle 23 from the solar feature catalogues, ed. by E. Marsch, K. Tsinganos, R. Marsden, L. Conroy. Proceedings of the Second Solar Orbiter Workshop. ESA-SP 641. (European Space Agency, Noordwijk, 2007). ISBN 92–9291–205–2. http://adsabs.harvard.edu/abs/2007ESASP.641E..90Z

K.K. Pandey, G. Yellaiah, K.M. Hiremath, Latitudinal distribution of soft X-ray flares and disparity in butterfly diagram. Astrophys. Space Sci. 356(2), 215–224 (2015). https://doi.org/10.1007/s10509-014-2148-8

W. Abdel-Sattar, R. Mawad, X. Moussasm. Study of solar flares’ latitudinal distribution during the solar period 2002–2017: GOES and RHESSI data comparison. Adv. Space Res. 62(9), 2701–2707 (2018). https://doi.org/10.1016/j.asr.2018.07.024

R. Mawad, W. Abdel-Sattar, The eruptive latitude of the solar flares during the Carrington rotations (CR1986-CR2195). Astrophys. Space Sci. 364(197), 2701–2707 (2019). https://doi.org/10.1007/s10509-019-3683-0

M.J. Aschwanden, Irradiance observations of the 1–8 Å solar soft x-ray flux from goes. Sol. Phys. J. 152(9), 53–59 (1994). https://doi.org/10.1007/BF0147318

L. Jetsu, S. Pohjolainen, J. Pelt, I. Tuominen, Longitudinal distribution of major solar flares, Astrophysics and Astronomy, 9th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun (Cambridge, 1995), p. 3. Report number NORDITA-95-76-A 

E.W. Cliver, F. Mekhaldi, R. Muscheler, Solar longitude distribution of high-energy proton flares: fluences and spectra. Astrophys J Lett. 900(1) (2020). id.L11, https://doi.org/10.3847/2041-8213/abad44

H. Li, H. Feng, Y. Liu, Z. Tian, J. Huang, Y. Miao, A longitudinally asymmetrical kink oscillation of coronal loop caused by a diagonally placed flare below the loop system. Astrophys. J. 881(111), 2, 6 (2019). https://doi.org/10.3847/1538-4357/ab2bf7

A.J. Conway, S.A. Matthews, The apparent longitude distribution of solar flares, Astronomy and Astrophysics, vol 401 (2003), pp. 1151–1157, Bibcode: 2003A&A...401.1151C, https://doi.org/10.1051/0004-6361:20030216

K. Loumou, I.G. Hannah, H.S. Hudson, The association of the Hale sector boundary with RHESSI solar flares and active longitudes. Astron. Astrophys. 618(A9), 12 (2018). https://doi.org/10.1051/0004-6361/201731050

C. Idosa, K. Shogile,  Effects of solar flares on ionospheric TEC over Iceland before and during the geomagnetic storm of 8 September 2017. Phys. Plasmas. 29(9) (2022). id.092902, 9 pp. https://doi.org/10.1063/5.0098971

H.M. Farid, R. Mawad, E. Ghamry, A. Yoshikawa, The impact of coronal mass ejections on the seasonal variation of the ionospheric critical frequency f0F2, Universe 2020. Special Issue for Space Weather 6(11), 200 (2020). https://doi.org/10.3390/universe6110200

C. Idosa, K. Shogile, Variations of ionospheric TEC due to coronal mass ejections and geomagnetic storm over New Zealand. New Astron.  99 (2023). article id. 101961. https://doi.org/10.1016/j.newast.2022.101961

S. Turck-Chièze, W. Däppen, E. Fossat, J. Provost, E. Schatzman, D. Vignaud, The solar interior. Phys. Rep. 230(2–4), 57–235 (1993). https://doi.org/10.1016/0370-1573(93)90020-E

M.J. Thompson, Helioseismology and the sun’s interior. Astron. Geophys. 45(4), 421–425 (2004). https://doi.org/10.1046/j.1468-4004.2003.45421.x

S. Turck-Chièze, S. Couvidat, Solar neutrinos, helioseismology and the solar internal dynamics. Reports on Progress in Physics 74(8), 086901 (2011). https://doi.org/10.1088/0034-4885/74/8/086901

A. Pradhan, Photoionization and Opacity. Atoms. 11, 52 (2023). https://doi.org/10.3390/atoms11030052

A.K. Pradhan, Interface of equation of state, atomic data, and opacities in the solar problem. Mon. Notices Royal Astron. Soc. Lett. 527(1), L179–L183 (2024). https://doi.org/10.1093/mnrasl/slad154

R. Mawad, X. Moussas, Sympathetic solar flare: characteristics and homogeneities. Astrophys. Space Sci. 367, 107 (2022). https://doi.org/10.1007/s10509-022-04145-3

Z. Changxi, W. Huaning, W. Jingxiu et al., Sympathetic flares in two adjacent active regions. Sol. Phys. 195, 135 (2000). https://doi.org/10.1023/A:1005237531865

W.T. Thompson, Coordinate systems for solar image data. A&A 449, 791–803 (2006). https://doi.org/10.1051/0004-6361:20054262

R. Mawad, W. Abdel-Sattar, H.M. Farid, An association of CMEs with solar flares detected by Fermi γ-ray burst monitor during solar cycle 24. New Astron. 82, 101450 (2021). https://doi.org/10.1016/j.newast.2020.101450

L.M. Winter, K.S. Balasubramaniam, Estimate of solar maximum using the 1–8 å geostationary operational environmental satellites x-ray measurements. ApJL 793, L45 (2014)

M.J. Aschwanden, S.L. Freeland, Automated solar flare statistic in soft X-rays IN over 37 years of GOES observations: the invariance of self-organized criticality during three solar cycles. Astrophys. J. 754, 2 (2012)

R.P. Lin, B.R. Dennis, G.J. Hurford, D. Smith, A. Zehnder, P. Harvey, D. Curtis, D. Pankow, P. Turin, M. Bester, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Sol. Phys. 210, 3–32 (2002)

R.P. Lin, B.R. Dennis, G.J. Hurford, D.M. Smith, A. Zehnder, P.R. Harvey, D.W. Curtis, D. Pankow, P. Turin, M. Bester et al., The RHESSI spectrometer. Sol. Phys. 210, 33–60 (2002)

R.A. García et al., Tracking solar gravity modes: the dynamics of the solar core. Science 316(5831), 1591 (2007). https://doi.org/10.1126/science.1140598

S.G. Ryan, A.J. Norton, Stellar evolution and nucleosynthesis, Stellar Evolution and Nucleosynthesis. Camb. Univ. Press. 62(9). ISBN:9780521196093

J. Christensen-Dalsgaard, D.O. Gough, M.J. Thompson, The depth of the solar convection zone. Astrophys. J. 387(413) (1991)

P.A. Gilman, Coronal holes and the sun's interior, Coronal holes and high speed wind streams, (1977), pp. 331–369. http://adsabs.harvard.edu/abs/1977chhs.conf..331G

C. Zwaan, Solar. Phys. 100(397) (1985)

JC. Pecker, Rev. Mex. Astron. Astrophys. (Serie de Conferencias). 4(39) (1996)

S.E. Donaldson, S.G. Siegel, Successful software development. arXiv preprint arXiv:1804.09028 (2001)

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes in C (Cambridge University Pressm, Cambridge, 1992)