The structure of winter phytoplankton in Lake Nero, Russia, a hypertrophic lake dominated by Planktothrix-like Cyanobacteria
Tóm tắt
The permanent dominance of Planktothrix-like сyanobacteria has been often reported for shallow eutrophic\hypertrophic lakes in central Europe in summer\autumn. However studies on phytoplankton growth under ice cover in nutrient-rich lakes are very scarce. Lake Nero provides a good example of the contrasting seasonal extremes in environmental conditions. Moreover, the ecosystem underwent a catastrophic transition from eutrophic to hypertrophic 2003–05, with dominance of filamentous cyanobacteria in summer\autumn. Towards the end of the period of ice cover, there is an almost complete lack of light and oxygen but abundance in nutrients, especially ammonium nitrogen, soluble reactive phosphorus and total phosphorus in lake Nero. The aim of the present study was to describe species composition and abundance of the phytoplankton, in relation to the abiotic properties of the habitat to the end of winters 1999–2010. We were interested if Planktothrix-like сyanobacteria kept their dominant role under the ice conditions or only survived, and how did the under-ice phytoplankton community differ from year to year. Samples collected contained 172 algal taxa of sub-generic rank. Abundance of phytoplankton varied widely from very low to the bloom level. Cyanobacteria (Limnothrix, Pseudanabaena, Planktothrix) were present in all winter samples but did not always dominate. Favourable conditions included low winter temperature, thicker ice, almost complete lack of oxygen and high ammonium concentration. Flagellates belonging to Euglenophyta and Cryptophyta dominated in warmer winters, when phosphorus concentrations increased. A full picture of algal succession in the lake may be obtained only if systematic winter observations are taken into account. Nearly anoxic conditions, severe light deficiency and high concentration of biogenic elements present a highly selective environment for phytoplankton. Hypertrophic water bodies of moderate zone covered by ice in winter and dominated by Planktothrix - like сyanobacteria in summer/autumn may follow several scenarios in the end of winter. It may be intense proliferation сyanobacteria normally dominating in summer, or the switch to the other species like the euglenoids and cryptomonads flagellates, or almost total depletion of phytoplankton.
Tài liệu tham khảo
Hickman M, Jenkerson CG: Phytoplankton primary productivity and population efficiency studies in a prairie-parkland lake near Edmonton, Alberta, Canada. Internationale Revue der gesamten Hydrobiologie. 1978, 63: 1-24. 10.1002/iroh.19780630102.
Hickman M: Seasonal succession, standing crop and determinats of primary productivity of the phytoplankton of Ministik Lake, Alberta, Canada. Hydrobiologia. 1979, 64: 105-121. 10.1007/BF00023186.
Squires LE, Rushforth SR: Winter phytoplankton communities of Utah Lake, Utah, USA. Hydrobiologia. 1986, 131: 235-248. 10.1007/BF00008859.
Wiedner C, Nixdorf B: Success of chrysophytes, cryptophytes and dinoflagellates over bluegreens (cyanobacteria) during an extreme winter (1995/96) in eutrophic shallow lakes. Hydrobiologia. 1998, 369 (370): 229-235.
Adrian R, Walz N, Hintze T, Hoeg S, Rusche R: Effect of ice duration on plankton succession during spring in a shallow polimictic lake. Freshw Biol. 1999, 41: 621-632. 10.1046/j.1365-2427.1999.00411.x.
Danilov RA, Ekelund NG: Phytoplankton communities at different depths in two eutrophic and two oligotrophic temperate lakes at higher latitude during the period of ice cover. Acta Protozool. 2001, 40: 197-201.
Phillips KA, Fawley MW: Winter phytoplankton community structure in three shallow temperate lakes during ice cover. Hydrobiologia. 2002, 470: 97-113. 10.1023/A:1015667803372.
Graham JM, Kent AD, Lauster GH, Yannarel AC, Graham LE, Triplett EW: Seasonal dynamics of phytoplankton and planktonic protozoan communities in a Northern temperate humic lake: diversity in a dinoflagellate dominated system. Microb Ecol. 2004, 48: 528-540. 10.1007/s00248-004-0223-3.
Judd KE, Adams HE, Bosch NS, Kostrzewski JM, Scott CE, Schultz BM, Wang DH, Kling GW: A case history: effects of mixing regime on nutrient dynamics and community structure in Third Sister Lake, Michigan during late winter and early spring 2003. In Lake and Reservoir Management. 2005, 21: 316-329. 10.1080/07438140509354437. Edited by Judd KE
Toporowska M, Pawlil-Skowronska B, Krupa D, Kornijow R: Winter versus summer blooming of phytoplankton in a shallow lake: effect of hypertrophic conditions. Pol J Ecol. 2011, 58: 3-12.
Yasnitsky VN, Skabichevski AP: Phytoplankton of Baikal. Trudy Baikalskoy Limnologicheskoy Stantsii. 1957, 15: 212-262.
Babanazarova ОV, Likhoshway YV, Sherbakov DY: On the morphological variability of Aulacoseira baicalensis and Aulacoseira islandica (Bacillariophyta) of Lake Baikal. Russia. Phycologia. 1996, 35 (2): 31-41.
Guseva KA, Iliynskyi AL: About chocked up the fishing net by Melosira italica at the period winter blooms in Rybinsk reservoir. Trudy Vsesouznogo gydrobiologicheskogo obschestva. 1959, 9: 183-194.
Verduin J: Photosynthesis by aquatic communities in northwestern Ohio. Ecology. 1959, 40: 377-383. 10.2307/1929753.
Wright RT: Dynamic of a phytoplankton community in an ice-covered lake. Limnol Oceanogr. 1964, 9: 163-178. 10.4319/lo.1964.9.2.0163.
Maeda O, Ichimura S: On the high density of a phytoplankton population found in lake under ice. Internationale Revue der gesamten Hydrobiologie. 1973, 58: 673-685. 10.1002/iroh.19730580507.
Lavrientieva GM: The peculiarity of winter phytoplankton development in small lakes of North-West. Trudy GosNIORH. 1981, 162: 89-103.
Nebaeus M: Algal water-blooms under ice-cover. Verhandlungen. Internationale Vereinigung für theoretische und angewandte Limnologie. 1984, 22: 719-724.
Trifonova IS: Ecology and succession of the lakes phytoplankton. 1990, Leningrad: Nauka
Babanazarova OV, Lyashenko OA: Inferring long-term changes in the physical-chemical environment of the shallow, enriched lake Nero from statistical and functional analyses of its phytoplankton. J Plankton Res. 2007, 29: 747-756. 10.1093/plankt/fbm055.
Sidelev SI, Babanazarova OV: Phytoplankton ecology and succession in the "Planktotrichetum-Lakes" type. The Algae: taxonomy, ecology and use in the monitoring. 2011, Yekaterinburg: Edited by Patova EN. Ural Div. RAS, 212-216.
Babanazarova OV, Kurmayer R, Sidelev SI, Aleksandrina EM, Sakharova EG: Phytoplankton structure and microcystin concentration in the highly eutrophic Lake Nero. Water Resour. 2011, 2: 229-236.
Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S: Towards a functional classification of the freshwater phytoplankton. J Plankton Res. 2002, 24: 417-428. 10.1093/plankt/24.5.417.
Nixdorf B, Mischke U, Rucker J: Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes – an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologie. 2003, 502: 111-121.
Bikbulatov ES, Bikbulatova EM, Litvinov AS, Poddubniy SA: Hydrology and hydrochemistry of Lake Nero. 2003, Rybinsk: Rybinsk Print House
Rivier IK, Stolbunova VN: Zooplankton of the lake Nero. Modern condition of Lake Nero ecosystem. Edited by: Rivier IK. 1991, Rybinsk: Institute for Biology of Inland Waters, 10-31.
Аgbeti MD, Smol JP: Winter limnology: a comparison of physical, chemical and biological characteristics in two temperate lakes during ice cover. Hydrobiologia. 1995, 304: 221-234. 10.1007/BF02329316.
Pasztaleniec A, Lenard T: Winter phytoplankton communities in different depths of three mesotrophic lakes (Leczna-Wlodawa Lakeland, Eastern Poland). Biologia. Section Botany. 2008, 63: 294-301.
Lyashenko OA: The phytoplankton of the lake Nero. Modern condition of Lake Nero ecosystem. Edited by: Rivier IK. 1991, Rybinsk: Institute for Biology of Inland Waters, 10-31.
Babanazarova OV: Structure of the phytoplankton and biogenic dynamic of the Lake Nero. Biology of inland waters. 2003, 1: 12-24.
Sidelev SI: Phytoplankton succession in highly eutrophic lake Nero. PhD thesis. 2010, Borok: Institute for Biology of Inland Waters
Nixdorf B, Hoeg S: Phytoplankton-community structure, succession and chlorophyll content in lake Muggelsee from 1979 to 1990. Internationale Revue der gesamten Hydrobiologie. 1993, 78: 359-377. 10.1002/iroh.19930780306.
Jones RI: Factors controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh) I. The Phytoplankton community and its environment. Journal of Ecology. 1977, 65: 547-559.
Babanazarova OV: Phytoplankton structure, composition and production in saline water-bodies in the Lower Amu Dar’ya. Int J Salt Lake Res. 1997, 6: 217-231.
Korneva LG: About vertical distribution of the phytoplankton in Rybinsk reservoir under ice. Biology of inland waters: information bulletin. 1990, 88: 3-7.
Lyashenko OA: The algae in water and bottom of the Rybinsk reservoir under ice. Biology of inland waters. 2004, 4: 43-47.
Reynolds CS: The Ecology of Phytoplankton. 2006, Cambridge: Cambridge University Press, 550-
Berger C, Bij de Vaate A: Limnological studies on the eutrophication of lake Wolderwijd a shallow hypertrophic Oscillatoria dominated lake in the Netherlands. Schweizerische Zeitschrift für Hydrologie, Hydrographie, Hydrobiologie, Fischerelwissenschaft, Abwasserreinigung. 1983, 45: 458-479.
Meffert ME: Planktic unsheated filaments (Cyanophyceae) with polar and central gas vacuoles. II. Biology, population dynamics and biotopes of Limnothrix redekei (Van Goor)Meffert. Arch Hydrobiol. 1989, 116: 257-282.
Padisak J, Crossetti LO, Naselli-Flores L: Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologie. 2009, 621: 1-19. 10.1007/s10750-008-9645-0.
Barone R, Naselli-Flores L: Distribution and seasonal dynamics of Cryptomonads in Sicilian water bodies. Hydrobiologia. 2003, 502: 325-329.
Bird DF, Kalff J: Bacterial grazing by planktonic algae. Science. 1986, 231: 494-495.
Pollingher U: Freshwater armoured dinoflagellates: growth, reproduction strategies and population dynamics. In Growth and reproduction strategies of freshwater phytoplankton. Edited by: Sandgren CD. 1988, Cambridge: Cambridge University Press, 134-174.
Papchenkov VG, Borisova MA, Satina SU, Remizov IE, Papenova NP: Macrophytes. State of Lakes Nero ecosystem at early of XXI centure. Edited by: Lazareva V. 2008, Moscow, Nauka: Institute for Biology of Inland Waters, 97-117.
Stroganova NS, Buzinova NS: Practice manual of the hydrochemia. 1980, Moscow: MGU
Jeffrey SW, Humhprey GF: New spectrophotometric equations for determing chlorophylls a, b, c1 and c2 in higher plants algae and natural phytoplankton. Biochem Physiol Pflanz. 1975, 167: 191-195.
Sladecek V: System of water quality from the biological point of view. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie. 1973, 7: 1-218.
Round FE: Diatom community – their response to changes in acidity. Philos Trans R Soc Lond B Biol Sci. 1990, 327: 243-249. 10.1098/rstb.1990.0059.
Van Dam H, Mertens A, Sinkeldam J: A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquat Ecol. 1994, 28: 117-133. 10.1007/BF02334251.
Shannon CE, Weaver W: The mathematical theory of communication. 1963, Illinois: University of Illinois press. Urbana