The structure and representation of n-ary algebras of DNA recombination
Tóm tắt
In this paper we investigate the structure and representation of n-ary algebras arising from DNA recombination, where n is a number of DNA segments participating in recombination. Our methods involve a generalization of the Jordan formalization of observables in quantum mechanics in n-ary splicing algebras. It is proved that every identity satisfied by n-ary DNA recombination, with no restriction on the degree, is a consequence of n-ary commutativity and a single n-ary identity of the degree 3n-2. It solves the well-known open problem in the theory of n-ary intermolecular recombination.
Tài liệu tham khảo
Bremner M.R., Jordan algebras arising from intermolecular recombination, SIGSAM Bull., 2005, 39(4), 106–117
Bremner M.R., Polynomial identities for ternary intermolecular recombination, Discrete Contin. Dyn. Syst. Ser. S, 2011, 4(6), 1387–1399
Cohn P.M., On homomorphic images of special Jordan algebras, Canad. J. Math., 1954, 6, 253–264
Einstein A., Podolsky B., Rosen N., Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 1935, 47(10), 777–780
Jacobson N., Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Interscience, New York-London, 1962
Jordan P., Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. I, 1933, 41, 209–217
Landweber L.F., Kari L., The evolution on cellular computing: natire’s solution to a computational problem, BioSystems, 1999, 52(1–3), 3–13
Mal’cev A.I., Algebraic Systems, Grundlehren Math. Wiss., 192, Springer, Berlin-Heidelberg-New York, 1973
Morgan T.H., A Critique of the Theory of Evolution, Princeton University Press, Princeton, 1916
Robbins D.P., Jordan elements in a free associative algebra. I, J. Algebra, 1971, 19(3), 354–378
Slin’ko A.M., On special varieties of Jordan algebras, Mat. Zametki, 1979, 26(3), 337–344 (in Russian)
Sverchkov S., Varieties of special algebras, Comm. Algebra, 1988, 16(9), 1877–1919
Sverchkov S.R., Structure and representation of Jordan algebras arising from intermolecular recombination, In: Algebras, Representations and Applications, Maresias, August 26–September 1, 2007, Contemp. Math. 483, American Mathematical Society, Providence, 2009, 261–285
Zhevlakov K.A., Slin’ko A.M., Shestakov I.P., Shirshov A.I., Rings that are Nearly Associative, Pure Appl. Math., 104, Academic Press, New York-London, 1982