The steps of vascular plant and land ecosystem evolution
Tóm tắt
Basal steps of higher plant evolution are reconstructed by the structure of their conducting tissues. Historically, transport networks are derivatives of buffer zones for symbiotic exchange between prokaryotic pro-cursers. Two symbiogenetic acts (prochlorophytes + protists → higher algae; marine algae + fungi → higher land plants) are fixed in plant body by two networks for water transport. Descending phloem arises in phylogenesis from the membrane capsule of cyanobacteria. Fungi mycelium is a source of rising xylem exudates. The diversity of plant life forms is considered as a sequence of adaptive evolution of algo-myco-bacterial complex. Relationship to global chronical of climate events is shown by the specificities of Paleogene thermal floras and Neogene cold floras. The trends of plant genome size evolution are discussed.
Tài liệu tham khảo
Akhmetiev, M.A., Earth climate in Paleocene through Eocene by paleobotanic evidence, in Klimat v epokhi krupnykh biosfernykh perestroek (Climate in the epochs of major biospheric transformations), Semikhatov, M.A. and Chumakov, N.M., Eds., Moscow: Nauka, 2004, pp. 10–43.
Baluška, F., Volkmann, D., and Barlow, P.W., Cell-Cell channels and their implications for cell theory, in Cell-cell channels, Baluška, F., Volkmann, D., and Barlow, P.W., Eds., New York: Springer-Verlag, 2006, pp. 1–18.
Bateman, R.M., Crane, P.R., DiMichele, W.A., Kenrick, P.R., Rowe, N.P., Speck, T., and Stein, W.E., Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation, Annu. Rev. Ecol. Syst., 1998, vol. 29, no. 1, pp. 263–292.
Bennett, M.D., DNA amount, latitude, and crop plant distribution, Environ. Exp. Bot., 1976, vol. 16, nos. 2–3, pp. 93–108.
Bennett, M.D., Variations in genomic form in plants and its ecological implications, New Phytol., 1987, vol. 106, suppl. 1, pp. 177–200.
Bennett, M.D. and Leitch, I.J., Plant DNA C-values database (release 4.0, Oct. 2005): http://www.kew.org/cvalues.
Benton, M.J., The fossil record 2, London: Acad. Press, 1993.
Famintsyn, A.S., On the role of symbiosis in the evolution of organisms, Tr. Imp. Akad. Nauk. Fiz.-Mat. Otd., 1907, vol. 20, pp. 3–35.
Gamalei, Yu.V., Transportnaya sistema sosudistykh rastenii (Transport system of vascular plants), St. Petersburg: S.-Peterb. Gos. Univ., 2004.
Gamalei, Yu.V., Mobile reticular organization of plastids and mitochondria in plant cells, Tsitologiya, 2006, vol. 48, no. 4, pp. 271–282.
Gamalei, Yu.V., The nature of the trophic tract in vascular plants, Tsitologiya, 2009, vol. 51, no. 5, pp. 375–387.
Gamalei, Yu.V., Origin of vessels and vascular plants, Bot. Zh., 2011, vol. 96, no. 7, pp. 809–825.
Gamalei, Yu.V. and Scheremetiev, S.N., Trends of genome evolution in land and secondary-water herbs, Tsitologiya, 2012, vol. 54, no. 6, pp. 449–458.
Gray, J.C., Sillivan, J.A., Hibberd, J.M., and Hansen, M.R., Stromules: mobile protrusions and interconnections between plastids, Plant Biol., 2001, vol. 3, no. 3, pp. 223–233.
Gregory, T.R., The C-value enigma in plants and animals: a review of parallels and an appeal for partnership, Ann. Bot., 2005, vol. 95, no. 1, pp. 133–146.
Gunning, B.E.S., Plastid stromules: video microscopy of their outgrowth, refraction, tensioning, anchoring, branching, bridging, and tip-shedding, Protoplasma, 2005, vol. 225, no. 1, pp. 33–42.
Karatygin, I.V., Koevolyutsiya gribov i rastenii (Coevolution of fungi with plants), Tr. Bot. Inst. Ross. Akad. Nauk, vol. 9, St. Petersburg: Gidrometeoizdat, 1993.
Keeling, P.J., The endosymbiotic origin, diversification and fate of plastids, Phylos. Trans. R. Soc. Lond., Ser. B: Biol. Sci., 2010, vol. 365, no. 1541, pp. 729–748.
Knight, Ch.A., Molinari, N.A., and Petrov, D.A., The large genome constraint hypothesis: Evolution, ecology and phenotype, Ann. Bot., 2005, vol. 95, no. 1, pp. 177–190.
Kozo-Polyansky, B.M., Novyi printsip biologii. Ocherk teorii simbiogeneza (Symbiogenesis: A new principle of evolution), Leningrad-Moscow, 1924.
Kozo-Polyansky, B.M., Novyi printsip biologii. Ocherk teorii simbiogeneza (Symbiogenesis: A new principle of evolution), Leningrad-Moscow, 1924.
Leitch, I.J., Soltis, D.E., Soltis, P.S., and Bennett, M.D., Evolution of DNA amounts across land plants (Embryophyta), Ann. Bot., 2005, vol. 95, no. 1, pp. 207–217.
Lewis, L.A. and McCourt, R.M., Green algae and the origin of land plants, Am. J. Bot., 2004, vol. 91, no. 10, pp. 1535–1556.
Margulis, L., Serial endosymbiotic theory (SET) and composite individuality. Transition from bacterial to eukaryotic genomes, Microbiol. Today, 2004, vol. 31, pp. 172–174.
Merezhkowsky, K.S., Teoriya dvukh plazm kak osnova simbiogenezisa i novogo ucheniya o proiskhozhdenii organizmov (The theory of two plasms as the basis of symbiogenesis, a new doctrine on the origin of organisms), Kazan: Tip. Imp. Univ., 1909.
Morley, R.J., Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests, Tropical rainforest responses to climate change, Bush M. and Flenly J., Eds., Berlin: Praxis-Springer-Verlag, 2007, pp. 1–31.
Muller, J., Fossil pollen record of extant angiosperms, Bot. Rev., 1981, vol. 47, no. 1, pp. 1–142.
Nikolaev, S.D., Oskina, N.S., Blyum, N.S., and Budenschikova, N.V., Neogene-Quaternary variations of the “Pole-Equator” temperature gradient of the surface oceanic waters in the North Atlantic and North Pacific, Global Planet. Change, 1998, vol. 18, nos. 3–4, pp. 85–111.
Ohri, D., Climate and growth form: the consequences for genome size in plants, Plant Biol., 2005, vol. 7, no. 5, pp. 449–458.
Pollard, D. and DeConto, R.M., Hysteresis in Cenozoic Antarctic Ice-Sheet variations, Global Planet. Change, 2005, vol. 45, pp. 9–21.
Rieseberg, L.H. and Brouillet, L., Are many plant species paraphyletic?, Taxon, 1994, vol. 43, no. 1, pp. 21–32.
Rozanov, A.Yu., When did life appear on the Earth?, Herald Russ. Acad. Sci., 2010, vol. 80, no. 3, pp. 305–312.
Salzmann, U., Haywood, A.M., Lunt, D.J., Valdes, P.J., and Hill, D.J., A new global reconstruction and data-model comparison for the Middle Pliocene, Global Ecol. Biogeogr., 2008, vol. 17, pp. 432–447.
Sedel’nikova, T.S., Muratova, E.N., and Pimenov, A.V., Ecological conditionality of the differentiation of karyotypes in the swamp and dry-valley populations of Pinaceae species, in Strukturno-funktsional’nye issledovaniya rastenii v prilozhenii k aktual’nym problemam ekologii i evolyutsii biosfery (Integrated studies of the structures and functions of plants and their applications to topical problems of ecology and evolution of the biosphere), St. Petersburg: S.-Peterb. Gos. Lesotekh. Akad., 2009, pp. 47–48.
Scheremet’ev, S.N., Gamalei, Yu.V., and Slemnev, N.N., Trends of angiosperm genome evolution, Tsitologiya, 2011, vol. 53, no. 4, pp. 295–312.
Smith, S.E. and Road, D.J., Micorrhizal symbiosis, London: Acad. Press, 1997.
Stewart, W.N. and Rothwell, G.W., Paleobotany and the evolution of plants, Cambridge: Cambridge Univ. Press, 1993.
Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego (Plant-microoranism symbioses: molecular genetics of agrosystems of the future), St. Petersburg: S.-Peterb. Gos. Univ., 2009.
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhla, D., Bruhn, F., Carden. G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., and Strauss, H., 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 1999, vol. 161, no. 1–3, pp. 59–88 (http://www.science.uottawa.ca/geology/isotope-data).
Wodniok, S., Brinkmann, H., Glöckner, G., Heidel, A.J., Philippe, H., Melkonian, M., and Becker, B., Origin of land plants: Do conjugating green algae hold the key?, BMC Evol. Biol., 2011, vol. 11, pp. 104–117.
Woodward, F.I. and Smith, S.N., Predictions and measurements of the maximum photosynthetic rate, Amax, at the global scale, in Ecophysiology of photosynthesis, Schulze, E.-D. and Caldwell M.M., Eds., Ecological Studies, vol. 100, Berlin: Springer-Verlag, 1995, pp. 491–509.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 2001, vol. 292, no. 5517, pp. 686–693.
Zavarzin, G.A., Initial stages of biosphere evolution, Herald Russ. Acad. Sci., 2010, vol. 80, no. 12, pp. 522–533.