The status of the kepler conjecture

The Mathematical Intelligencer - Tập 16 Số 3 - Trang 47-58 - 1994
Thomas C. Hales1
1Department of Mathematics, University of Michigan, Ann Arbor, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

B. Cipra, Gaps in a sphere-packing proof?,Science 259 (1993), 895.

L. Fejes Tóth,Regular Figures, New York: MacMillan, 1964.

L. Fejes Tóth,Lagerungen in der Ebene auf der Kugel und im Raum, Berlin: Springer-Verlag, 1953.

David H. Freedman, Round things in square spaces,Discover, 13(1) (January 1992), 36.

S. Günther, Ein stereometrisches Problem,Arch. Math. Phys. 57 (1875), 209–215.

W.-Y. Hsiang, On the density of sphere packings inE 3, II — The proof of Kepler’s conjecture, Center for Pure and Appl. Math. University of California, Berkeley, preprint PAM-535, September, 1991.

W.-Y. Hsiang, On the sphere packing problem and the proof of Kepler’s conjecture,Int. J. Math. 4(5) (1993), 739–831.

W.-Y. Hsiang, personal communication, Letter to T. Hales, March 3, 1992.

I. Stewart, The kissing number,Scientific American 256(2) (Feb. 1992), 112–115.

I. Stewart, Mathematics, 1992Yearbook to the Encyclopædia Britannica, 1992.

I. Stewart, Has the sphere packing problem been solved?,New Scientist 134 (2 May 1992), 16.

I. Stewart,The Problems of Mathematics, 2nd ed., New York: Oxford University Press, 1992.