The square root problem for second-order, divergence form operators with mixed boundary conditions on L p

Journal of Evolution Equations - Tập 15 Số 1 - Trang 165-208 - 2015
Pascal Auscher1, Nadine Badr2, Robert Haller‐Dintelmann3, Joachim Rehberg4
1Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, UMR du CNRS 8628, 91405, Orsay Cedex, France
2Université de Lyon, CNRS, Institut Camille Jordan, Université Lyon 1, 43, boulevard du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
3Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany
4Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

H. Amann: Linear and quasilinear parabolic problems. Birkhäuser, Basel-Boston-Berlin, 1995

A. Ancona: On strong barriers and an inequality of Hardy for domains in $${\mathbb{R}^{n}}$$ R n . J. London Math. Soc. (2) 34 (1986), no. 2, 274–290.

Arendt W.: Semigroup properties by Gaussian estimates. RIMS Kokyuroku 1009, 162–180 (1997)

Arendt W., ter Elst A.F.M.: Gaussian estimates for second order elliptic operators with boundary conditions. J. Operator Theory 38, 87–130 (1997)

P. Auscher: On necessary and sufficient conditions for L p -estimates of Riesz Transforms Associated to Elliptic Operators on $${\mathbb{R}^n}$$ R n and related estimates. Mem. Amer. Math. Soc. 186 (2007), no. 871.

P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and Ph. Tchamitchian: The solution of the Kato square root problem for second order elliptic operators on $${\mathbb{R}^{n}}$$ R n . Ann. Math. (2) 156 (2002), no. 2, 633–654.

P. Auscher, A. McIntosh and A. Nahmod: The square root problem of Kato in one dimension and first order elliptic systems. Indiana Univ. Math. J. 46 (1997), no. 3, 659–695.

P. Auscher and Ph. Tchamitchian: Square root problem for divergence operators and related topics. Astérisque 249 (1998).

P. Auscher and Ph. Tchamitchian: Square roots of elliptic second order divergence operators on strongly Lipschitz domains: L p theory. Math. Ann. 320 (2001), no. 3, 577–623.

A. Axelsson, S. Keith and A. McIntosh: The Kato square root problem for mixed boundary value problems. J. Lond. Math. Soc. (2) 74 (2006), no. 1, 113–130.

N. Badr: Interpolation réelle des espaces de Sobolev sur les espaces métriques mesurés et applications aux inégalités fonctionnelles. PhD Thesis, Université Paris-Sud, 2007. http://tel.archives-ouvertes.fr/tel-00736066 .

N. Badr: Real interpolation of Sobolev spaces. Math. Scand. 105 (2009), no. 2, 235–264.

C. Bennett and R. Sharpley: Interpolation of operators. Vol. 129 of Pure and Applied Mathematics, Academic Press, Inc., Boston, MA, 1988.

J. Bergh and J. Löfström: Interpolation spaces, An introduction. Springer, Berlin, 1976.

K. Brewster, D. Mitrea, I. Mitrea, and M. Mitrea: Extending Sobolev Functions with Partially vanishing Traces from Locally $${(\varepsilon,\delta)}$$ ( ε , δ ) -Domains and Applications to Mixed Boundary Value Problems. J. Funct. Anal. 266 (2014), no. 7, 4314–4421.

A. Carlsson and V. Maz’ya: On approximation in weighted Sobolev spaces and self-adjointness. Math. Scand. 74 (1994), no. 1, 111–124.

M. Cwikel: Relations between real and complex interpolation spaces. Indiana Univ. Math. J. 36 (1987), no. 4, 905–912.

Denk R., Dore G., Hieber M., Prüss J., Venni A.: New thoughts on old results of R. T. Seeley. Math. Ann. 328, 545– (2004)

R. Denk, M. Hieber and J. Prüss: $${\mathcal{R}}$$ R -boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 166 (2003), no. 788.

J. Diestel, H. Jarchow and A. Tonge: Absolutely summing operators. Vol. 43 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995.

Dore G.: Maximal regularity in L p spaces for an abstract Cauchy problem. Adv. Differential Equations 5, 293– (2000)

Duong X.T., M c Intosh A.: The L p boundedness of Riesz transforms associated with divergence form operators. Proceedings of the Centre for Mathematical Analysis, ANU, Canberra 37, 15–25 (1999)

X. T. Duong and D. Robinson: Semigroup kernels, Poisson bounds, and holomorphic functional calculus. J. Funct. Anal. 142 (1996), no. 1, 89–128.

M. Egert, R. Haller-Dintelmann and P. Tolksdorf: The Kato square root problem for mixed boundary conditions. J. Funct. Anal. 267 (2014), no. 5, 1419–1461.

Elschner J., Rehberg J., Schmidt G.: Optimal regularity for elliptic transmission problems including C 1 interfaces. Interfaces Free Bound. 9, 233–252 (2007)

A. F. M. ter Elst and J. Rehberg: $${L^\infty}$$ L ∞ -estimates for divergence operators on bad domains. Anal. Appl. (Singap.) 10 (2012), no. 2, 207–214.

A. F. M. ter Elst and D. W. Robinson: On Kato’s square root problem. Hokkaido Math. J. 26 (1997), no. 2, 365–376.

L. C. Evans and R. F. Gariepy: Measure theory and fine properties of functions. Studies in advanced mathematics, CRC Press, Boca Raton-New York-London-Tokyo, 1992.

D. Gilbarg and N. S. Trudinger: Elliptic partial differential equations of second order, 2nd. Ed., Springer-Verlag, Berlin, 1983.

Griepentrog J.A., Gröger K., Kaiser H. C., Rehberg J.: Interpolation for function spaces related to mixed boundary value problems. Math. Nachr. 241, 110–120 (2002)

M. Haase: The functional calculus for sectorial operators. Vol. 169 of Operator Theory: Advances and Applications, Birkhäuser, Basel, 2006.

Hajlasz P., Koskela P., Tuominen H.: Sobolev embeddings, extensions and measure density condition. J. Funct. Anal. 254, 1217–1234 (2008)

P. Hajlasz: Sobolev spaces on metric measure spaces (heat kernels and analysis on manifolds, graphs, and metric spaces). Vol. 338 of Contemp. Math., Amer. Math. Soc., 2003, pp. 173–218.

R. Haller-Dintelmann, C. Meyer, J. Rehberg and A. Schiela: Hölder continuity and optimal control for nonsmooth elliptic problems. Appl. Math. Optim. 60 (2009), no. 3, 397–428.

R. Haller-Dintelmann and J. Rehberg: Maximal parabolic regularity for divergence operators including mixed boundary conditions. J. Differential Equations 247 (2009), no. 5, 1354–1396.

Haller-Dintelmann R., Rehberg J.: Coercivity for elliptic operators and positivity of solutions on Lipschitz domains. Arch. Math. 95, 457–468 (2010)

R. Haller-Dintelmann and J. Rehberg: Maximal regularity for divergence operators on distribution spaces. In: J. Escher, P. Guidotti, P. Mucha, J. Prüss, Y. Shibata, G. Simonett, C. Walker and W. Zajaczkowski (Eds.), Parabolic Problems, The Herbert Amann Festschrift, vol. 80 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Basel, 2011.

R. Haller-Dintelmann, W. Höppner, H.-C. Kaiser, J. Rehberg and G. M. Ziegler: Optimal elliptic W 1,p regularity near 3-dimensional, heterogeneous Neumann vertices. WIAS-Preprint no. 1515. To appear in Functional Analysis and its Applications.

M. Hieber: Gaussian estimates and holomorphy of semigroups on L p spaces. J. London Math. Soc. (2) 54 (1996), no. 1, 148–160.

T. Hytönen, A. McIntosh and P. Portal: Kato’s square root problem in Banach spaces. J. Funct. Anal. 254 (2008), no. 3, 675–726.

D. Jerison and C. Kenig: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995), no. 1, 161–219.

A. Jonsson and H. Wallin: Function spaces on subsets of $${\mathbb{R}^{n}}$$ R n . Math. Rep. 2 (1984), no. 1.

Kalton N., Weis L.: The H ∞-calculus and sums of closed operators. Math. Ann. 321, 319–345 (2001)

T. Kato: Perturbation theory for linear operators. Reprint of the corr. print of the 2nd ed., Classics in Mathematics, Springer-Verlag, Berlin, 1980.

R. Korte, J. Lehrbäck and H. Tuominen: The equivalence between pointwise Hardy inequalities and uniform fatness. Math. Ann. 351 (2011), no. 3, 711–731.

D. Lamberton: Equations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces L p . J. Funct. Anal. 72 (1987), 252–262.

J. Lehrbäck: Pointwise Hardy inequalities and uniformly fat sets. Proc. Amer. Math. Soc. 136 (2008), no. 6, 2193–2200.

J. L. Lewis: Uniformly fat sets. Trans. Amer. Math. Soc. 308 (1998), no. 1, 177–196.

V. Maz’ya: Sobolev spaces with applications to elliptic partial differential equations. Vol. 342 of Grundlehren der Mathematischen Wissenschaften, Springer, Heidelberg, 2011.

I. Mitrea and M. Mitrea: The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains. Trans. Amer. Math. Soc. 359 (2007), no. 9, 4143–4182.

E. Ouhabaz: Analysis of Heat Equations on Domains. Vol. 31 of London Mathematical Society Monographs Series, Princeton University Press, Princeton, 2005.

A. Pazy: Semigroups of linear operators and applications to partial differential equations. Springer, 1983.

J. Prüss: Maximal regularity for evolution equations in L p -spaces. Conf. Semin. Mat. Univ. Bari 285 (2002) 1–39.

R. Seeley: Fractional powers of boundary problems. Actes du Congres International des Mathematiciens (Nice, 1970), Tome 2, Paris, 1971, pp. 795–801.

E. M. Stein: Singular integrals and differentiability properties of functions. Vol. 30 of Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1970.

A. Torchinsky: Real variable methods in harmonic analysis. Vol 123 of Pure and Applied Mathematics, Academic Press, Orlando, 1986.

H. Triebel: Interpolation theory, function spaces, differential operators. North Holland Publishing Company, Amsterdam-New York-Oxford, 1978.

Wannebo A.: Hardy inequalities, Proc. Amer. Math. Soc. 109, 85–95 (1990)