The square root problem for second-order, divergence form operators with mixed boundary conditions on L p
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. Ancona: On strong barriers and an inequality of Hardy for domains in $${\mathbb{R}^{n}}$$ R n . J. London Math. Soc. (2) 34 (1986), no. 2, 274–290.
Arendt W.: Semigroup properties by Gaussian estimates. RIMS Kokyuroku 1009, 162–180 (1997)
Arendt W., ter Elst A.F.M.: Gaussian estimates for second order elliptic operators with boundary conditions. J. Operator Theory 38, 87–130 (1997)
P. Auscher: On necessary and sufficient conditions for L p -estimates of Riesz Transforms Associated to Elliptic Operators on $${\mathbb{R}^n}$$ R n and related estimates. Mem. Amer. Math. Soc. 186 (2007), no. 871.
P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and Ph. Tchamitchian: The solution of the Kato square root problem for second order elliptic operators on $${\mathbb{R}^{n}}$$ R n . Ann. Math. (2) 156 (2002), no. 2, 633–654.
P. Auscher, A. McIntosh and A. Nahmod: The square root problem of Kato in one dimension and first order elliptic systems. Indiana Univ. Math. J. 46 (1997), no. 3, 659–695.
P. Auscher and Ph. Tchamitchian: Square root problem for divergence operators and related topics. Astérisque 249 (1998).
P. Auscher and Ph. Tchamitchian: Square roots of elliptic second order divergence operators on strongly Lipschitz domains: L p theory. Math. Ann. 320 (2001), no. 3, 577–623.
A. Axelsson, S. Keith and A. McIntosh: The Kato square root problem for mixed boundary value problems. J. Lond. Math. Soc. (2) 74 (2006), no. 1, 113–130.
N. Badr: Interpolation réelle des espaces de Sobolev sur les espaces métriques mesurés et applications aux inégalités fonctionnelles. PhD Thesis, Université Paris-Sud, 2007. http://tel.archives-ouvertes.fr/tel-00736066 .
N. Badr: Real interpolation of Sobolev spaces. Math. Scand. 105 (2009), no. 2, 235–264.
C. Bennett and R. Sharpley: Interpolation of operators. Vol. 129 of Pure and Applied Mathematics, Academic Press, Inc., Boston, MA, 1988.
K. Brewster, D. Mitrea, I. Mitrea, and M. Mitrea: Extending Sobolev Functions with Partially vanishing Traces from Locally $${(\varepsilon,\delta)}$$ ( ε , δ ) -Domains and Applications to Mixed Boundary Value Problems. J. Funct. Anal. 266 (2014), no. 7, 4314–4421.
A. Carlsson and V. Maz’ya: On approximation in weighted Sobolev spaces and self-adjointness. Math. Scand. 74 (1994), no. 1, 111–124.
M. Cwikel: Relations between real and complex interpolation spaces. Indiana Univ. Math. J. 36 (1987), no. 4, 905–912.
Denk R., Dore G., Hieber M., Prüss J., Venni A.: New thoughts on old results of R. T. Seeley. Math. Ann. 328, 545– (2004)
R. Denk, M. Hieber and J. Prüss: $${\mathcal{R}}$$ R -boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 166 (2003), no. 788.
J. Diestel, H. Jarchow and A. Tonge: Absolutely summing operators. Vol. 43 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995.
Dore G.: Maximal regularity in L p spaces for an abstract Cauchy problem. Adv. Differential Equations 5, 293– (2000)
Duong X.T., M c Intosh A.: The L p boundedness of Riesz transforms associated with divergence form operators. Proceedings of the Centre for Mathematical Analysis, ANU, Canberra 37, 15–25 (1999)
X. T. Duong and D. Robinson: Semigroup kernels, Poisson bounds, and holomorphic functional calculus. J. Funct. Anal. 142 (1996), no. 1, 89–128.
M. Egert, R. Haller-Dintelmann and P. Tolksdorf: The Kato square root problem for mixed boundary conditions. J. Funct. Anal. 267 (2014), no. 5, 1419–1461.
Elschner J., Rehberg J., Schmidt G.: Optimal regularity for elliptic transmission problems including C 1 interfaces. Interfaces Free Bound. 9, 233–252 (2007)
A. F. M. ter Elst and J. Rehberg: $${L^\infty}$$ L ∞ -estimates for divergence operators on bad domains. Anal. Appl. (Singap.) 10 (2012), no. 2, 207–214.
A. F. M. ter Elst and D. W. Robinson: On Kato’s square root problem. Hokkaido Math. J. 26 (1997), no. 2, 365–376.
L. C. Evans and R. F. Gariepy: Measure theory and fine properties of functions. Studies in advanced mathematics, CRC Press, Boca Raton-New York-London-Tokyo, 1992.
D. Gilbarg and N. S. Trudinger: Elliptic partial differential equations of second order, 2nd. Ed., Springer-Verlag, Berlin, 1983.
Griepentrog J.A., Gröger K., Kaiser H. C., Rehberg J.: Interpolation for function spaces related to mixed boundary value problems. Math. Nachr. 241, 110–120 (2002)
M. Haase: The functional calculus for sectorial operators. Vol. 169 of Operator Theory: Advances and Applications, Birkhäuser, Basel, 2006.
Hajlasz P., Koskela P., Tuominen H.: Sobolev embeddings, extensions and measure density condition. J. Funct. Anal. 254, 1217–1234 (2008)
P. Hajlasz: Sobolev spaces on metric measure spaces (heat kernels and analysis on manifolds, graphs, and metric spaces). Vol. 338 of Contemp. Math., Amer. Math. Soc., 2003, pp. 173–218.
R. Haller-Dintelmann, C. Meyer, J. Rehberg and A. Schiela: Hölder continuity and optimal control for nonsmooth elliptic problems. Appl. Math. Optim. 60 (2009), no. 3, 397–428.
R. Haller-Dintelmann and J. Rehberg: Maximal parabolic regularity for divergence operators including mixed boundary conditions. J. Differential Equations 247 (2009), no. 5, 1354–1396.
Haller-Dintelmann R., Rehberg J.: Coercivity for elliptic operators and positivity of solutions on Lipschitz domains. Arch. Math. 95, 457–468 (2010)
R. Haller-Dintelmann and J. Rehberg: Maximal regularity for divergence operators on distribution spaces. In: J. Escher, P. Guidotti, P. Mucha, J. Prüss, Y. Shibata, G. Simonett, C. Walker and W. Zajaczkowski (Eds.), Parabolic Problems, The Herbert Amann Festschrift, vol. 80 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Basel, 2011.
R. Haller-Dintelmann, W. Höppner, H.-C. Kaiser, J. Rehberg and G. M. Ziegler: Optimal elliptic W 1,p regularity near 3-dimensional, heterogeneous Neumann vertices. WIAS-Preprint no. 1515. To appear in Functional Analysis and its Applications.
M. Hieber: Gaussian estimates and holomorphy of semigroups on L p spaces. J. London Math. Soc. (2) 54 (1996), no. 1, 148–160.
T. Hytönen, A. McIntosh and P. Portal: Kato’s square root problem in Banach spaces. J. Funct. Anal. 254 (2008), no. 3, 675–726.
D. Jerison and C. Kenig: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995), no. 1, 161–219.
A. Jonsson and H. Wallin: Function spaces on subsets of $${\mathbb{R}^{n}}$$ R n . Math. Rep. 2 (1984), no. 1.
T. Kato: Perturbation theory for linear operators. Reprint of the corr. print of the 2nd ed., Classics in Mathematics, Springer-Verlag, Berlin, 1980.
R. Korte, J. Lehrbäck and H. Tuominen: The equivalence between pointwise Hardy inequalities and uniform fatness. Math. Ann. 351 (2011), no. 3, 711–731.
D. Lamberton: Equations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces L p . J. Funct. Anal. 72 (1987), 252–262.
J. Lehrbäck: Pointwise Hardy inequalities and uniformly fat sets. Proc. Amer. Math. Soc. 136 (2008), no. 6, 2193–2200.
J. L. Lewis: Uniformly fat sets. Trans. Amer. Math. Soc. 308 (1998), no. 1, 177–196.
V. Maz’ya: Sobolev spaces with applications to elliptic partial differential equations. Vol. 342 of Grundlehren der Mathematischen Wissenschaften, Springer, Heidelberg, 2011.
I. Mitrea and M. Mitrea: The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains. Trans. Amer. Math. Soc. 359 (2007), no. 9, 4143–4182.
E. Ouhabaz: Analysis of Heat Equations on Domains. Vol. 31 of London Mathematical Society Monographs Series, Princeton University Press, Princeton, 2005.
A. Pazy: Semigroups of linear operators and applications to partial differential equations. Springer, 1983.
J. Prüss: Maximal regularity for evolution equations in L p -spaces. Conf. Semin. Mat. Univ. Bari 285 (2002) 1–39.
R. Seeley: Fractional powers of boundary problems. Actes du Congres International des Mathematiciens (Nice, 1970), Tome 2, Paris, 1971, pp. 795–801.
E. M. Stein: Singular integrals and differentiability properties of functions. Vol. 30 of Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1970.
A. Torchinsky: Real variable methods in harmonic analysis. Vol 123 of Pure and Applied Mathematics, Academic Press, Orlando, 1986.
H. Triebel: Interpolation theory, function spaces, differential operators. North Holland Publishing Company, Amsterdam-New York-Oxford, 1978.