The spatial distribution of surface ocean primary productivity in the wake of Marinoan global glaciation

Global and Planetary Change - Tập 212 - Trang 103816 - 2022
Chaochao Xing1, Ruimin Wang1, Bing Shen1, Chao Li2, Xianguo Lang3, Kangjun Huang4
1Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing 100871, China
2Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, PR China
3State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
4State Key Laboratory of Continental Dynamics and Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi’an 710069, China

Tài liệu tham khảo

Anbar, 2004, Iron stable isotopes: beyond biosignatures, Earth Planet. Sci. Lett., 217, 223, 10.1016/S0012-821X(03)00572-7 Bao, 2018, Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China, Earth Planet. Sci. Lett., 483, 52, 10.1016/j.epsl.2017.12.001 Beard, 2004, Fe Isotope Variations in the Modern and Ancient Earth and Other Planetary Bodies, Rev. Mineral. Geochem., 55, 319, 10.2138/gsrmg.55.1.319 Beard, 2003, Application of Fe isotopes to tracing the geochemical and biological cycling of Fe, Chem. Geol., 195, 87, 10.1016/S0009-2541(02)00390-X Berner, 2001, Modeling atmospheric O2 over Phanerozoic time, Geochim. Cosmochim. Acta, 65, 685, 10.1016/S0016-7037(00)00572-X Berner, 2006, GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2, Geochim. Cosmochim. Acta, 70, 5653, 10.1016/j.gca.2005.11.032 Berner, 1983, Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory, Geochim. Cosmochim. Acta, 47, 855, 10.1016/0016-7037(83)90151-5 Böttcher, 1998, Sulfur isotope fractionation during experimental precipitation of iron(II) and manganese(II) sulfide at room temperature, Chem. Geol., 146, 127, 10.1016/S0009-2541(98)00004-7 Busigny, 2018, Origin of the Neoproterozoic Fulu iron formation, South China: insights from iron isotopes and rare earth element patterns, Geochim. Cosmochim. Acta, 242, 123, 10.1016/j.gca.2018.09.006 Butler, 2005, Fe isotope fractionation on FeS formation in ambient aqueous solution, Earth Planet. Sci. Lett., 236, 430, 10.1016/j.epsl.2005.05.022 Canfield, 1989, Reactive iron in marine sediments, Geochim. Cosmochim. Acta, 53, 619, 10.1016/0016-7037(89)90005-7 Canfield, 1993, The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction, Geochim. Cosmochim. Acta, 57, 3867, 10.1016/0016-7037(93)90340-3 Casciotti, 2016, Nitrogen and oxygen isotopic studies of the marine nitrogen cycle, Annu. Rev. Mar. Sci., 8, 379, 10.1146/annurev-marine-010213-135052 Chen, 2021, Accurate analysis of fe isotopes in Fe- dominated minerals by excimer laser ablation MC-ICP-MS on wet plasma conditions, At. Spectrosc., 42, 282 Cohen, 2009, Large spinose microfossils in Ediacaran rocks as resting stages of early animals, Proc. Natl. Acad. Sci., 106, 6519, 10.1073/pnas.0902322106 Condon, 2005, U-Pb ages from the neoproterozoic Doushantuo Formation, China, Science (American Association for the Advancement of Science), 308, 95, 10.1126/science.1107765 Crosby, 2007, The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens, Geobiology, 5, 169, 10.1111/j.1472-4669.2007.00103.x Cui, 2019, Germanium/silica ratio and rare earth element composition of silica-filling in sheet cracks of the Doushantuo cap carbonates, South China: constraining hydrothermal activity during the Marinoan snowball Earth glaciation, Precambrian Res., 332, 10.1016/j.precamres.2019.105407 de Boyer Montégut, 2004, Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology, J. Geophys. Res. Oceans, 109, 10.1029/2004JC002378 Gardner, 2006, Global POC concentrations from in-situ and satellite data. Deep-sea research. Part II, Top. Stud. Oceanogr., 53, 718, 10.1016/j.dsr2.2006.01.029 Gong, 2017, Average iron isotopic compositions of the upper continental crust: constrained by loess from the Chinese Loess Plateau, Acta Geochim., 36, 125, 10.1007/s11631-016-0131-5 Guilbaud, 2011, Abiotic Pyrite Formation produces a large fe isotope fractionation, Science, 332, 1548, 10.1126/science.1202924 Guilbaud, 2011, Experimental determination of the equilibrium Fe isotope fractionation between Feaq2+ and FeSm (mackinawite) at 25 and 2°C, Geochim. Cosmochim. Acta, 75, 2721, 10.1016/j.gca.2011.02.023 Habicht, 1998, Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite, Geochim. Cosmochim. Acta, 62, 2585, 10.1016/S0016-7037(98)00167-7 Harmandas, 1998, Crystal growth of pyrite in aqueous solutions. Inhibition by organophosphorus compounds, Langmuir, 14, 1250, 10.1021/la970354c He, 2021, A rapid rise of seawater δ13C during the deglaciation of the Marinoan Snowball Earth, Glob. Planet. Chang., 207, 10.1016/j.gloplacha.2021.103672 Hoffman, 1998, A neoproterozoic snowball Earth, Science (American Association for the Advancement of Science), 281, 1342, 10.1126/science.281.5381.1342 Hoffman, 2007, Are basal Ediacaran (635 Ma) post-glacial “cap dolostones” diachronous?, Earth Planet. Sci. Lett., 258, 114, 10.1016/j.epsl.2007.03.032 Hoffman, 2017, Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science, Advances, 3 Huang, 2016, Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation, Proc. Natl. Acad. Sci. U. S. A., 113, 14904, 10.1073/pnas.1607712113 Ireland, 2014, Charge-mode electrometer measurements of S-isotopic compositions on SHRIMP-SI, Int. J. Mass Spectrom., 359, 26, 10.1016/j.ijms.2013.12.020 Jiang, 2006, Stratigraphy, sedimentary structures, and textures of the Late Neoproterozoic Doushantuo cap carbonate in South China, J. Sediment. Res., 76, 978, 10.2110/jsr.2006.086 Jiang, 2011, Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China, Gondwana Res., 19, 831, 10.1016/j.gr.2011.01.006 Johnson, 2005, Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction, Geochim. Cosmochim. Acta, 69, 963, 10.1016/j.gca.2004.06.043 Johnson, 2008, The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth, Annu. Rev. Earth Planet. Sci., 36, 457, 10.1146/annurev.earth.36.031207.124139 Knoll, 2000, Learning to tell Neoproterozoic time, Precambrian Res., 100, 3, 10.1016/S0301-9268(99)00067-4 Lang, 2016, Ocean oxidation during the deposition of basal Ediacaran Doushantuo cap carbonates in the Yangtze Platform, South China, Precambrian Res., 281, 253, 10.1016/j.precamres.2016.06.006 Lang, 2018, Cyclic cold climate during the Nantuo Glaciation: evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China, Precambrian Res., 310, 243, 10.1016/j.precamres.2018.03.004 Lang, 2018, Transient marine euxinia at the end of the terminal Cryogenian glaciation, Nat. Commun., 9, 3019, 10.1038/s41467-018-05423-x Lang, 2020, Local environmental variation obscures the interpretation of pyrite sulfur isotope records, Earth Planet. Sci. Lett., 533, 10.1016/j.epsl.2019.116056 Lang, 2021, Cracking the superheavy pyrite enigma: possible roles of volatile organosulfur compound emission, Natl. Sci. Rev., 8, 10.1093/nsr/nwab034 Leavitt, 2013, Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record, Proc. Natl. Acad. Sci., 110, 11244, 10.1073/pnas.1218874110 Lenstra, 2019, The shelf-to-basin iron shuttle in the Black Sea revisited, Chem. Geol., 511, 314, 10.1016/j.chemgeo.2018.10.024 Li, 2020, Continental weathering intensity during the termination of the Marinoan Snowball Earth: Mg isotope evidence from the basal Doushantuo cap carbonate in South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 552, 10.1016/j.palaeo.2020.109774 Libes, 2009 Liu, 2010, Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS, Chin. Sci. Bull., 55, 1535, 10.1007/s11434-010-3052-4 Liu, 2015, New SIMS U–Pb zircon age and its constraint on the beginning of the Nantuo glaciation, Sci. Bull., 60, 958, 10.1007/s11434-015-0790-3 Logan, 1995, Terminal Proterozoic reorganization of biogeochemical cycles, Nature, 376, 53, 10.1038/376053a0 Lyons, 2006, A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins, Geochim. Cosmochim. Acta, 70, 5698, 10.1016/j.gca.2006.08.021 Ma, 2022, Active biogeochemical cycles during the Marinoan global glaciation, Geochim. Cosmochim. Acta, 321, 155, 10.1016/j.gca.2022.01.012 McCall, 2006, The Vendian (Ediacaran) in the geological record: enigmas in geology’s prelude to the Cambrian explosion, Earth Sci. Rev., 77, 1, 10.1016/j.earscirev.2005.08.004 Mukherjee, 2019, Pyrite trace-element and sulfur isotope geochemistry of paleo-mesoproterozoic McArthur Basin: proxy for oxidative weathering, Am. Mineral., 104, 1256, 10.2138/am-2019-6873 Ning, 2021, Precipitation of Marinoan cap carbonate from Mn-enriched seawater, Earth Sci. Rev., 218, 10.1016/j.earscirev.2021.103666 Pasquier, 2017, Pyrite sulfur isotopes reveal glacial−interglacial environmental changes, Proc. Natl. Acad. Sci., 114, 5941, 10.1073/pnas.1618245114 Pasquier, 2021, Strong local, not global, controls on marine pyrite sulfur isotopes, Sci. Adv., 7, eabb7403, 10.1126/sciadv.abb7403 Pasquier, 2021, Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone, Nat. Commun., 12, 4403, 10.1038/s41467-021-24753-x Planavsky, 2010, The evolution of the marine phosphate reservoir, Nature, 467, 1088, 10.1038/nature09485 Polyakov, 2007, Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy, Geochim. Cosmochim. Acta, 71, 3833, 10.1016/j.gca.2007.05.019 Poulton, 2002, The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition, Am. J. Sci., 302, 774, 10.2475/ajs.302.9.774 Poulton, 2004, A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide, Geochim. Cosmochim. Acta, 68, 3703, 10.1016/j.gca.2004.03.012 Raiswell, 2012, The iron biogeochemical cycle past and present, Geochem. Perspect., 1, 1, 10.7185/geochempersp.1.1 Rouxel, 2005, Iron isotope constraints on the archean and paleoproterozoic ocean redox state, Science, 307, 1088, 10.1126/science.1105692 Rudnick, 2013 Ruttenberg, 2003, 585 Sahoo, 2012, Ocean oxygenation in the wake of the Marinoan glaciation, Nature, 489, 546, 10.1038/nature11445 Sahoo, 2016, Oceanic oxygenation events in the anoxic Ediacaran ocean, Geobiology, 14, 457, 10.1111/gbi.12182 Scholz, 2018, Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies, Earth Sci. Rev., 184, 29, 10.1016/j.earscirev.2018.08.002 Sim, 2011, Large sulfur isotope fractionation does not require disproportionation, Science, 333, 74, 10.1126/science.1205103 Talley, 2011 Taylor, 2011, Iron minerals in marine sediments record chemical environments, Elements, 7, 113, 10.2113/gselements.7.2.113 Wang, 2003, History of Neoproterozoic rift basins in South China: implications for Rodinia break-up, Precambrian Res., 122, 141, 10.1016/S0301-9268(02)00209-7 Wang, 2020, The coupling of Phanerozoic continental weathering and marine phosphorus cycle, Sci. Rep., 10, 5794, 10.1038/s41598-020-62816-z Wang, 2021, Behavior of iron isotopes in hydrothermal systems: Beebe and Von Damm vent fields on the Mid-Cayman ultraslow-spreading ridge, Earth Planet. Sci. Lett., 575, 10.1016/j.epsl.2021.117200 Wilkin, 1996, Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species, Geochim. Cosmochim. Acta, 60, 4167, 10.1016/S0016-7037(97)81466-4 Wilkin, 1997, Formation processes of framboidal pyrite, Geochim. Cosmochim. Acta, 61, 323, 10.1016/S0016-7037(96)00320-1 Wu, 2012, Experimental determination of iron isotope fractionations among Feaq2+–FeSaq–Mackinawite at low temperatures: Implications for the rock record, Geochim. Cosmochim. Acta, 89, 46, 10.1016/j.gca.2012.04.047 Xiao, 2004, 199 Xiao, 1998, Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature, 391, 553, 10.1038/35318 Xing, 2021, Predominant microbial iron reduction in sediment in early Cambrian sulfidic oceans, Glob. Planet. Chang., 206, 10.1016/j.gloplacha.2021.103637 Xiong, 2019, Phosphorus cycling in Lake Cadagno, Switzerland: a low sulfate euxinic ocean analogue, Geochim. Cosmochim. Acta, 251, 116, 10.1016/j.gca.2019.02.011 Yin, 2007, Doushantuo embryos preserved inside diapause egg cysts, Nature, 446, 661, 10.1038/nature05682 Zhou, 2007, The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance, Geol. J., 42, 229, 10.1002/gj.1062 Zhou, 2019, Calibrating the terminations of Cryogenian global glaciations, Geology (Boulder), 47, 251, 10.1130/G45719.1 Zhu, 2007, Integrated Ediacaran (Sinian) chronostratigraphy of South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 254, 7, 10.1016/j.palaeo.2007.03.025