The somatic generation of immune recognition

European Journal of Immunology - Tập 1 Số 1 - Trang 1-9 - 1971
N. K. Jerne1
1Basel Institute for Immunology, Basel

Tóm tắt

Abstract

Antibody specificity is determined by structural v‐genes that code for the amino acid sequences of the variable regions of antibody polypeptide chains. The present hypothesis proposes that the germ‐cells of an animal carry a set of v‐genes determining the combining sites of antibodies directed against a complete set of a certain class of histocompatibility antigens of the species to which this animal belongs. The evolutionary development of this set of v‐genes in phylogeny is traced back to the requirements for cell to cell recognition in all metazoa. The hypothesis leads to a distinction between two populations of antigen‐sensitive cells. One population consists of cells forming antibodies against foreign antigens; these lymphocytes have arisen as mutants in clones descending from lymphocytic stem cells which expressed v‐genes belonging to the subset (subset S) coding for antibody against histocompatibility antigens that the individual happens to possess. The other population consists of allograft rejecting lymphocytes that express v‐genes of the remaining subset (subset A) coding for antibody against histocompatibility antigens of the species that the individual does not possess. The primary lymphoid organs are viewed as mutant‐breeding organs. In these organs (e. g. in the thymus), the proliferation of lymphocytes expressing the v‐genes of subset S and the subsequent suppression of the cells of these “forbidden” clones, leads to the selection of mutant cells expressing v‐genes that have been modified by spontaneous random somatic mutation. This process generates self‐tolerance as well as a diverse population of antigen‐sensitive cells that reflects antibody diversity. The proliferation in the primary lymphoid organs of lymphocytes expressing v‐genes of subset A generates the antigen‐sensitive cell population that is responsible for allo‐aggression.

The theory explains how a functional immune system can develop through a selection pressure exerted by self‐antigens, starting during a period in early ontogeny that precedes clonal selection by foreign antigens. The hypothesis provides explanations for the variability of the N‐terminal regions of antibody polypeptide chains, for the dominant genetic control of specific immune responsiveness by histocompatibility alleles, for the relative preponderance of antigen‐sensitive cells directed against allogeneic histocompatibility antigens, for antibody‐idiotypes, for allelic exclusion, for the precommitment of any given antigen‐sensitive lymphocyte to form antibodies of only one molecular species and for the cellular dynamics in the primary lymphoid tissues.

Từ khóa


Tài liệu tham khảo

Jerne N. K., 1970, Immunological Surveillance

10.5962/bhl.title.8281

Pernis B. J. Exp. Med.(in press).

10.1038/2221291a0

10.1073/pnas.52.4.1099

Van de Vijver G. Analyse de quelques phénomènes d'histoincompatibilité intraspécifique chez l'éponge d'eau douce Ephydatia fluviatilis (Linné) Arch. Zool. Exp. Gen.in press.

Kissmeyer‐Nielsen F., 1970, Transplantation Reviews, 4, 1

10.1071/BI9580200

10.1038/217624a0

10.1139/g69-054

Burnet F. M., 1969, Cellular Immunology

Metcalf D., 1964, The Thymus

Miller J. F. A. P., 1969, Aust. J. Sci., 32, 3

10.1101/SQB.1967.032.01.071

10.1152/physrev.1967.47.3.437

Delbrück M. personal communication October1969.

Wilson D. B., 1970, Immunological Surveillance

Metcalf D. personal communication1969.

10.1042/bj0880220

10.1073/pnas.51.5.846

10.1073/pnas.53.6.1403

10.1126/science.149.3688.1090

10.1101/SQB.1967.032.01.021

10.1038/216330a0

10.1073/pnas.64.3.997

10.1073/pnas.66.2.337

10.1038/2271318a0

10.1021/bi00853a023

10.1073/pnas.41.11.849

10.1146/annurev.mi.14.100160.002013

10.1073/pnas.54.3.864

10.1101/SQB.1967.032.01.048

Dreyer W. J., 1970, Symposium on Developmental Aspects of Antibody Formation

10.1126/science.168.3929.325

10.1016/0079-6107(70)90026-X

10.1126/science.129.3364.1649

10.1038/211242a0

10.1038/2101308a0

10.1073/pnas.57.2.353

10.1126/science.157.3786.267

10.1101/SQB.1967.032.01.023

10.1038/215371a0

10.1038/227341a0

10.1007/978-3-642-87668-4_43

10.1146/annurev.bi.38.070169.002215

Cohn M., 1970, Ciba Foundation Symposium on Control Processes in Multicellular Organisms, 255

10.1101/SQB.1967.032.01.063

10.1084/jem.129.3.459

10.1038/icb.1969.3

Simonsen M., 1967, Acta Path. Microbiol. Scand., 40, 480

10.1084/jem.131.2.391

Ceppellini R. personal communication1970.

Ceppellini R. inProceedings of the 3rd Congress of the Transplantation Society The Hague1970. (in press).

10.1111/j.1699-0463.1943.tb05009.x

Fink M. A., 1953, J. Immunol., 70, 61, 10.4049/jimmunol.70.1.61

Stern K., 1956, Genetics, 41, 517, 10.1093/genetics/41.4.517

Polak L., 1968, Immunology, 14, 707

10.1126/science.142.3590.400

10.1084/jem.117.1.55

10.1084/jem.122.4.673

10.1084/jem.126.5.969

10.1101/SQB.1967.032.01.069

10.1084/jem.128.1.1

10.1084/jem.130.6.1263

10.1126/science.163.3872.1207

10.1126/science.168.3933.852

10.1016/S0065-2776(08)60477-0

10.1084/jem.122.4.771

10.1111/j.1423-0410.1967.tb03388.x

Jaton J. C., 1968, J. Biol. Chem., 243, 5616, 10.1016/S0021-9258(18)91912-5

10.1126/science.158.3807.1484

10.1098/rspb.1966.0095

Burnet F. M., 1970, Infectious Agents and Host Resistance, 1

10.1038/226123a0

10.1084/jem.119.3.485

Oudin J., 1969, C. R. Acad. Sci. [D] (Paris), 268, 230

10.1084/jem.121.6.969

10.1002/9780470719695.ch13

10.1126/science.140.3572.1218

Oudin J., 1963, C. R. Acad. Sci. [D] (Paris), 257, 805

10.1038/201687a0

10.1084/jem.127.1.215

10.1016/0019-2791(69)90183-9

Silverstein A. M., 1968, Differentiation and Immunology, 85, 10.1016/B978-1-4831-9873-6.50010-0