Xử lý plasma phun precursor dung dịch trong tổng hợp vật liệu nano

JOM - Tập 59 - Trang 54-59 - 2007
E. Brinley1, K. S. Babu1, S. Seal1
1Surface Engineering and Nanotechnology Facility, Advanced Materials Processing and Analysis Center, Mechanical Materials and Aerospace Engineering, Nanoscience and Technology Center, University of Central Florida, Orlando, USA

Tóm tắt

Phương pháp tổng hợp plasma phun precursor dung dịch (SPPS) là một kỹ thuật đơn giản, một bước và nhanh chóng để tổng hợp các vật liệu gốm nano từ các precursor dung dịch. Phương pháp đổi mới này sử dụng các precursor trộn lẫn ở cấp độ phân tử dưới dạng lỏng, tránh việc phải sử dụng một phương pháp xử lý riêng biệt để chuẩn bị bột và cho phép tổng hợp một loạt các bột và lớp phủ oxit kim loại. Ngoài ra, kỹ thuật này cũng được coi là triển vọng cho việc hình thành các pha không cân bằng trong các hệ thống oxit đa thành phần. Bài tổng quan ngắn này cung cấp cái nhìn về những khía cạnh quan trọng của SPPS, các tính chất thu được so với phương pháp phun plasma truyền thống, và những ứng dụng tiềm năng của quy trình SPPS.

Từ khóa

#phun plasma #vật liệu nanocomposite #gốm nano #oxit kim loại #tổng hợp vật liệu

Tài liệu tham khảo

P. Fauchais et al., “Developments in Direct Current Plasma Spraying,” Surface & Coatings Technology, 201 (2006), pp. 1908–1921. J. Karthikeyan et al., “Plasma Spray Synthesis of Nanomaterial Powders and Deposits,” Materials Science and Engineering A, 238 (1997), pp. 275–286. X. Ma et al., “Solid Oxide Fuel Cell Development by Using Novel Plasma Spray Techniques,” Journal of Fuel Cell Science and Technology, 2 (2005), pp. 190–196. P.S. Devi et al., “Single-Step Deposition of Eu-Doped Y2O3 Phosphor Coatings through a Precursor Plasma Spraying Technique,” Journal of Materials Research, 17 (2002), pp. 2771–2774. X.Z. Guo et al., “Synthesis of Yttrium Iron Garnet (YIG) by Citrate-Nitrate Gel Combustion and Precursor Plasma Spray Processes,” Journal of Magnetism and Magnetic Materials, 295 (2005), pp. 145–154. T.W. Coyle et al., “Plasma Spray Deposition of Hydroxyapatite Coatings from Sol Precursors,” Materials Science Forum, 539–543 (2007), pp. 1128–1133. A. Ioncea et al., “Bioactive Coatings Based on Hydroxyapatite,” Key Engineering Materials, 132–136 (1997), pp. 1532–1535. E. Garcia et al., “Hydroxyapatite Coatings Produced by Plasma Spraying of Organic Based Solution Precursor,” Ceramic Engineering and Science Proceedings, Advances in Bioceramics and Biocomposites II—A Collection of Papers Presented at the 30th International Conference on Advanced Ceramics and Composites, 27 (2006), pp. 103–110. F. Gitzhofer, M. Bonneau, and M. Boulos, “Double Doped Ceria Electrolyte Synthesized by Solution Plasma Spraying with Induction Plasma Technology,” Thermal Spray 2001: New Surfaces for a New Millenium, ed. C.C. Berndt, K.A. Khor, and E.F. Lugscheider (Materials Park, OH: ASM International, 2001), pp. 61–68. V. Viswanathan et al., “High-Temperature Oxidation Behavior of Solution Precursor Plasma Sprayed Nanoceria Coating on Martensitic Steels,” Journal of the American Ceramic Society, 90 (2007), pp. 870–877. A.D. Jadhav et al., “Thick Ceramic Thermal Barrier Coatings with High Durability Deposited using Solution-Precursor Plasma Spray,” Materials Science and Engineering A, 405 (2005), pp. 313–320. L. Xie et al., “Deposition of Thermal Barrier Coatings using the Solution Precursor Plasma Spray Process,” Journal of Materials Science, 39 (2004), pp. 1639–1646. P.P. Nitin et al., “Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution Precursor Plasma Spray,” Acta Materialia, 49 (2001), pp. 2251–2257. L. Xie et al., “Formation of Vertical Cracks in Solution-Precursor Plasma-Sprayed Thermal Barrier Coatings,” Surface & Coatings Technology, 201 (2006), pp. 1058–1064. X. Ma et al., “Low Thermal Conductivity Thermal Barrier Coating Deposited by the Solution Plasma Spray Process,” Surface & Coatings Technology, 201 (2006), pp. 4447–4452. A.D. Jadhav et al., “Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures,” Acta Materialia, 54 (2006), pp. 3343–3349. L. Xie et al., “Phase and Microstructural Stability of Solution Precursor Plasma Sprayed Thermal Barrier Coatings,” Materials Science and Engineering A, 381 (2004), pp. 189–195. L. Xie et al., “Deposition Mechanisms of Thermal Barrier Coatings in the Solution Precursor Plasma Spray Process,” Surface and Coatings Technology, 177–178 (2004), pp. 103–107. A.L. Vasiliev, P.P. Nitin, and X. Ma, “Coatings of Metastable Ceramics Deposited by Solution-Precursor Plasma Spray: I. Binary ZrO2-Al2O3 System,” Acta Materialia, 54 (2006), pp. 4913–4920. A.L. Vasiliev and N.P. Padture, “Coatings of Metastable Ceramics Deposited by Solution-Precursor Plasma Spray: II. Ternary ZrO2-Y2O3-Al2O3 System,” Acta Materialia, 54 (2006), pp. 4921–4928. W.G. Mao et al., “Modeling of Residual Stresses Variation with Thermal Cycling in Thermal Barrier Coatings,” Mechanics of Materials, 38 (2006), pp. 1118–1127. A.G. Evans, M.Y. He, and J.W. Hutchinson, “Mechanics-Based Scaling Laws for the Durability of Thermal Barrier Coatings,” Progress in Materials Science, 46 (2001), pp. 249–271. A.G. Evans et al., “Mechanisms Controlling the Durability of Thermal Barrier Coatings,” Progress in Materials Science, 46 (2001), pp. 505–553. X. Liangde et al., “Deposition of Thermal Barrier Coatings using the Solution Precursor Plasma Spray Process,” Journal of Materials Science, 39 (2004), pp. 1639–1646. K. Bobzin, E. Lugscheider, and R. Nickel, “Modeling and Simulation in the Production Process Control and Material Property Calculation of Complex Structured EB-PVD TBCs,” Computational Materials Science, 39 (2007), pp. 600–610. X. Ning et al., “Modification of Microstructure and Electrical Conductivity of Plasma-Sprayed YSZ Deposit through Post-Densification Process,” Materials Science and Engineering: A, 428 (2006), pp. 98–105. A.D. Jadhav et al., “Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures,” Acta Materialia, 54 (2006), pp. 3343–3349. L. Xie et al., “Identification of Coating Deposition Mechanisms in the Solution-Precursor Plasma-Spray Process using Model Spray Experiments,” Materials Science and Engineering A, 362 (2003), pp. 204–212. S. Sampath et al., “Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia,” Materials Science and Engineering A, 272 (1999), pp. 181–188. L. Xie et al., “Phase and Microstructural Stability of Solution Precursor Plasma Sprayed Thermal Barrier Coatings,” Materials Science and Engineering A, 381 (2004), pp. 189–195. S. Guo and Y. Kagawa, “Effect of Thermal Exposure on Hardness and Young’s Modulus of EB-PVD Yttria-Partially-Stabilized Zirconia Thermal Barrier Coatings,” Ceramics International, 32 (2006), pp. 263–270. N.P. Padture et al., “Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution Precursor Plasma Spray,” Acta Materialia, 49 (2001), pp. 2251–2257. A. Jadhav et al., “Thick Ceramic Thermal Barrier Coatings with High Durability Deposited Using Solution-Precursor Plasma Spray,” Materials Science and Engineering: A, 405 (2005), pp. 313–320. M. Gell et al., “Mechanisms of Spallation of Solution Precursor Plasma Spray Thermal Barrier Coatings,” Surface & Coatings Technology, 188–189 (2004), pp. 101–106. A.L. Vasiliev, N.P. Padture, and X. Ma, “Coatings of Metastable Ceramics Deposited by Solution-Precursor Plasma Spray: I. Binary ZrO2-Al2O3 System,” Acta Materialia, 54 (2006), pp. 4913–4920. J. Li et al., “Phase Structure and Luminescence Properties of Eu3+-Doped TiO2 Nanocrystals Synthesized by Ar/O2 Radio Frequency Thermal Plasma Oxidation of Liquid Precursor Mists,” Journal of Physical Chemistry B, 110 (2006), pp. 1121–1127. L. Xie et al., “Deposition Mechanisms of Thermal Barrier Coatings in the Solution Precursor Plasma Spray Process,” Surface and Coatings Technology, 177–178 (2001), pp. 103–107. A. Ozturk and B.M. Cetegen, “Modeling of Plasma Assisted Formation of Precipitates in Zirconium Containing Liquid Precursor Droplets,” Materials Science and Engineering A, 384 (2004), pp. 331–351. A. Ozturk and B.M. Cetegen, “Modeling of Axially and Transversely Injected Precursor Droplets into a Plasma Environment,” International Journal of Heat and Mass Transfer, 48 (2005), pp. 4367–4383.