The soluble form of CD160 acts as a tumor mediator of immune escape in melanoma
Tóm tắt
Melanoma is responsible for 90% of skin cancer-related deaths. Major therapeutic advances have led to a considerable improvement in the prognosis of patients, with the development of targeted therapies (BRAF or MEK inhibitors) and immunotherapy (anti-CTLA-4 or -PD-1 antibodies). However, the tumor constitutes an immunosuppressive microenvironment that prevents the therapeutic efficacy and/or promotes the development of secondary resistances. CD160 is an activating NK-cell receptor initially described as delineating the NK and CD8+ T-cell cytotoxic populations. Three forms of CD160 have been described: (1) the GPI isoform, constitutively expressed and involved in the initiation of NK-cells' cytotoxic activity, (2) the transmembrane isoform, neo-synthesized upon cell activation, allowing the amplification of NK cells' cytotoxic functions and (3) the soluble form, generated after cleavage of the GPI isoform, which presents an immuno-suppressive activity. By performing immunohistochemistry analyses, we observed a strong expression of CD160 at the primary cutaneous tumor site of melanoma patients. We further demonstrated that melanoma cells express CD160-GPI isoform and constitutively release the soluble form (sCD160) into the tumor environment. sCD160 was shown to inhibit the cytotoxic activity of NK-cells towards their target cells. In addition, it was found in the serum of melanoma patients and associated with increased tumor dissemination. Altogether these results support a role for sCD160 in the mechanisms leading to the inhibition of anti-tumor response and immune surveillance in melanoma.
Tài liệu tham khảo
Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. https://doi.org/10.1056/NEJMoa1003466
Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M, Mandala M, Demidov L, Stroyakovskiy D, Thomas L, de la Cruz-Merino L, Dutriaux C, Garbe C, Sovak MA, Chang I, Choong N, Hack SP, McArthur GA, Ribas A (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371:1867–1876. https://doi.org/10.1056/NEJMoa1408868
Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, Lichinitser M, Dummer R, Grange F, Mortier L, Chiarion-Sileni V, Drucis K, Krajsova I, Hauschild A, Lorigan P, Wolter P, Long GV, Flaherty K, Nathan P, Ribas A, Martin AM, Sun P, Crist W, Legos J, Rubin SD, Little SM, Schadendorf D (2015) Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372:30–39. https://doi.org/10.1056/NEJMoa1412690
Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbe C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. https://doi.org/10.1056/NEJMoa1412082
Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A, investigators K-, (2015) Pembrolizumab versus Ipilimumab in advanced Melanoma. N Engl J Med 372:2521–2532. https://doi.org/10.1056/NEJMoa1503093
Hinshaw DC, Shevde LA (2019) The tumor microenvironment innately modulates cancer progression. Cancer Res 79:4557–4566. https://doi.org/10.1158/0008-5472.CAN-18-3962
Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998. https://doi.org/10.1038/ni1102-991
Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol 27:16–25. https://doi.org/10.1016/j.coi.2014.01.004
Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, Coussens LM, DeClerck YA (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72:2473–2480. https://doi.org/10.1158/0008-5472.CAN-12-0122
Bensussan A, Gluckman E, el Marsafy S, Schiavon V, Mansur IG, Dausset J, Boumsell L, Carosella E (1994) BY55 monoclonal antibody delineates within human cord blood and bone marrow lymphocytes distinct cell subsets mediating cytotoxic activity. Proc Natl Acad Sci U S A 91:9136–9140. https://doi.org/10.1073/pnas.91.19.9136
Anumanthan A, Bensussan A, Boumsell L, Christ AD, Blumberg RS, Voss SD, Patel AT, Robertson MJ, Nadler LM, Freeman GJ (1998) Cloning of BY55, a novel Ig superfamily member expressed on NK cells, CTL, and intestinal intraepithelial lymphocytes. J Immunol 161:2780–2790
Cai G, Anumanthan A, Brown JA, Greenfield EA, Zhu B, Freeman GJ (2008) CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator. Nat Immunol 9:176–185. https://doi.org/10.1038/ni1554
Le Bouteiller P, Barakonyi A, Giustiniani J, Lenfant F, Marie-Cardine A, Aguerre-Girr M, Rabot M, Hilgert I, Mami-Chouaib F, Tabiasco J, Boumsell L, Bensussan A (2002) Engagement of CD160 receptor by HLA-C is a triggering mechanism used by circulating natural killer (NK) cells to mediate cytotoxicity. Proc Natl Acad Sci U S A 99:16963–16968. https://doi.org/10.1073/pnas.012681099
Barakonyi A, Rabot M, Marie-Cardine A, Aguerre-Girr M, Polgar B, Schiavon V, Bensussan A, Le Bouteiller P (2004) Cutting edge: engagement of CD160 by its HLA-C physiological ligand triggers a unique cytokine profile secretion in the cytotoxic peripheral blood NK cell subset. J Immunol 173:5349–5354. https://doi.org/10.4049/jimmunol.173.9.5349
Rabot M, El Costa H, Polgar B, Marie-Cardine A, Aguerre-Girr M, Barakonyi A, Valitutti S, Bensussan A, Le Bouteiller P (2007) CD160-activating NK cell effector functions depend on the phosphatidylinositol 3-kinase recruitment. Int Immunol 19:401–409. https://doi.org/10.1093/intimm/dxm005
Tu TC, Brown NK, Kim TJ, Wroblewska J, Yang X, Guo X, Lee SH, Kumar V, Lee KM, Fu YX (2015) CD160 is essential for NK-mediated IFN-gamma production. J Exp Med 212:415–429. https://doi.org/10.1084/jem.20131601
Giustiniani J, Marie-Cardine A, Bensussan A (2007) A soluble form of the MHC class I-specific CD160 receptor is released from human activated NK lymphocytes and inhibits cell-mediated cytotoxicity. J Immunol 178:1293–1300. https://doi.org/10.4049/jimmunol.178.3.1293
Ortonne N, Ram-Wolff C, Giustiniani J, Marie-Cardine A, Bagot M, Mecheri S, Bensussan A (2011) Human and mouse mast cells express and secrete the GPI-anchored isoform of CD160. J Invest Dermatol 131:916–924. https://doi.org/10.1038/jid.2010.412
Giustiniani J, Bensussan A, Marie-Cardine A (2009) Identification and characterization of a transmembrane isoform of CD160 (CD160-TM), a unique activating receptor selectively expressed upon human NK cell activation. J Immunol 182:63–71. https://doi.org/10.4049/jimmunol.182.1.63
Giustiniani J, Alaoui SS, Marie-Cardine A, Bernard J, Olive D, Bos C, Razafindratsita A, Petropoulou A, de Latour RP, Le Bouteiller P, Bagot M, Socie G, Bensussan A (2012) Possible pathogenic role of the transmembrane isoform of CD160 NK lymphocyte receptor in paroxysmal nocturnal hemoglobinuria. Curr Mol Med 12:188–198. https://doi.org/10.2174/156652412798889081
Ghazi B, Thonnart N, Bagot M, Bensussan A, Marie-Cardine A (2015) KIR3DL2/CpG ODN interaction mediates sezary syndrome malignant T cell apoptosis. J Invest Dermatol 135:229–237. https://doi.org/10.1038/jid.2014.286
Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, Cucolo L, Lee DSM, Pauken KE, Huang AC, Gangadhar TC, Amaravadi RK, Schuchter LM, Feldman MD, Ishwaran H, Vonderheide RH, Maity A, Wherry EJ, Minn AJ (2016) Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167(1540–1554):e1512. https://doi.org/10.1016/j.cell.2016.11.022
Marabelle A, Aspeslagh S, Postel-Vinay S, Soria JC (2017) JAK mutations as escape mechanisms to anti-PD-1 therapy. Cancer Discov 7:128–130. https://doi.org/10.1158/2159-8290.CD-16-1439
Sedy JR, Bjordahl RL, Bekiaris V, Macauley MG, Ware BC, Norris PS, Lurain NS, Benedict CA, Ware CF (2013) CD160 activation by herpesvirus entry mediator augments inflammatory cytokine production and cytolytic function by NK cells. J Immunol 191:828–836. https://doi.org/10.4049/jimmunol.1300894
Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L (2017) Control of metastasis by NK cells. Cancer Cell 32:135–154. https://doi.org/10.1016/j.ccell.2017.06.009
Meza Guzman LG, Keating N, Nicholson SE (2020) Natural killer cells: tumor surveillance and signaling. Cancers (Basel). https://doi.org/10.3390/cancers12040952
Fons P, Chabot S, Cartwright JE, Lenfant F, L’Faqihi F, Giustiniani J, Herault JP, Gueguen G, Bono F, Savi P, Aguerre-Girr M, Fournel S, Malecaze F, Bensussan A, Plouet J, Le Bouteiller P (2006) Soluble HLA-G1 inhibits angiogenesis through an apoptotic pathway and by direct binding to CD160 receptor expressed by endothelial cells. Blood 108:2608–2615. https://doi.org/10.1182/blood-2005-12-019919
Chabot S, Jabrane-Ferrat N, Bigot K, Tabiasco J, Provost A, Golzio M, Noman MZ, Giustiniani J, Bellard E, Brayer S, Aguerre-Girr M, Meggetto F, Giuriato S, Malecaze F, Galiacy S, Jais JP, Chose O, Kadouche J, Chouaib S, Teissie J, Abitbol M, Bensussan A, Le Bouteiller P (2011) A novel antiangiogenic and vascular normalization therapy targeted against human CD160 receptor. J Exp Med 208:973–986. https://doi.org/10.1084/jem.20100810
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555. https://doi.org/10.1016/s1471-4906(02)02302-5
Speiser DE, Ho PC, Verdeil G (2016) Regulatory circuits of T cell function in cancer. Nat Rev Immunol 16:599–611. https://doi.org/10.1038/nri.2016.80
Morvan MG, Lanier LL (2016) NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer 16:7–19. https://doi.org/10.1038/nrc.2015.5
Ziani L, Safta-Saadoun TB, Gourbeix J, Cavalcanti A, Robert C, Favre G, Chouaib S, Thiery J (2017) Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget 8(12):19780–19794. https://doi.org/10.18632/oncotarget.15540