The solubility of nantokite (CuCl(s)) and Cu speciation in low-density fluids near the critical isochore: An in-situ XAS study

Geochimica et Cosmochimica Acta - Tập 72 - Trang 4094-4106 - 2008
Weihua Liu1,2, Joël Brugger3,2, Barbara Etschmann1,4, Denis Testemale5,6, Jean-Louis Hazemann6
1CSIRO Exploration and Mining, School of Geosciences, Monash University, Clayton, Vic. 3800, Australia
2Division of Mineralogy, South Australian Museum, North Terrace, SA 5000, Australia
3School of Earth and Environmental Sciences, The University of Adelaide, SA 5000, Australia
4CODES Centre of Excellence, University of Tasmania, TAS 7001, Australia
5SNBL, ESRF, Polygone Scientifique, 6 rue Jules Horowitz, 38043 Grenoble, France
6Institut Néel, Département MCMF, 25 Avenue des Martyrs, BP166 38042 Grenoble Cedex 09, France

Tài liệu tham khảo

Anderson, 1998, A microbeam XAFS study of aqueous chlorozinc complexing to 430°C in fluid inclusions from the Knaumühle granitic pegmatite, Saxonian granulite facies, Germany, Can. Mineral., 36, 511 Ankudinov, 1998, Real space multiple scattering calculation of XANES, Phys. Rev., B58, 7565, 10.1103/PhysRevB.58.7565 Archibald, 2001, The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures, Geochim. Cosmochim. Acta, 65, 4413, 10.1016/S0016-7037(01)00730-X Archibald, 2002, An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures, Geochim. Cosmochim. Acta, 66, 1611, 10.1016/S0016-7037(01)00867-5 Armellini, 1993, Solubility of Sodium-chloride and sulfate in subcritical and supercritical water-vapor from 450–550°C and 100–250Bar, Fluid Phase Equilibr., 84, 123, 10.1016/0378-3812(93)85120-B Bassett, 2000, Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solution up to supercritical conditions, Chem. Geol., 167, 3, 10.1016/S0009-2541(99)00196-5 Berry, 2006, A XANES study of Cu speciation in high-temperature brines using synthetic fluid inclusions, Am. Mineral., 91, 1773, 10.2138/am.2006.1940 Booth, 2003, Improved self-absorption correction for fluorescence measurements of extended X-ray absorption fine-structure, Phys. Scripta, T115, 202 Brugger, 2007, An XAS study of the structure and thermodynamics of Cu(I) chloride complexes in brines up to high temperature (400°C, 600bars), Geochim. Cosmochim. Acta, 71, 4920, 10.1016/j.gca.2007.08.003 Candela, 1984, The partitioning of copper and molybdenum between silicate melts and aqueous fluids, Geochim. Cosmochim. Acta, 48, 373, 10.1016/0016-7037(84)90257-6 Cauzid, 2007, Contrasting Cu-complexing behaviour in vapour and liquid fluid inclusions from the Yankee Lode tin deposit, Mole Granite, Australia, Chem. Geol., 246, 39, 10.1016/j.chemgeo.2007.09.001 Crerar, 1976, Ore solution chemistry V. Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 to 300°C, Econ. Geol., 71, 772, 10.2113/gsecongeo.71.4.772 Ding, K. and W. E. Seyfried Jr. (1992) Determination of Fe–Cl complexing in the low pressure supercritical region (NaCl fluid): iron solubility constraints on pH of subseafloor hydrothermal fluids. Geochim. Cosmochim. Acta 56, 3681–3692. Douville, 2002, The rainbow vent fluids (36 degrees 14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids, Chem. Geol., 184, 37, 10.1016/S0009-2541(01)00351-5 Fulton, 2000, An X-ray absorption fine structure study of copper(I) chloride coordination structure in water up to 325°C, Chem. Phys. Lett., 330, 300, 10.1016/S0009-2614(00)01110-6 Galobardes, 1981, Solubility of sodium-chloride in dry steam, J. Chem. Eng. Data, 26, 363, 10.1021/je00026a004 Hack, 2006, A synthetic fluid inclusion study of copper solubility in hydrothermal brines from 525 to 725°C and 0.3 to 1.7GPa, Geochim. Cosmochim. Acta, 70, 3970, 10.1016/j.gca.2006.04.035 Heinrich, 2005, The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study, Miner. Deposita, 39, 864, 10.1007/s00126-004-0461-9 Heinrich, 1992, Segregation of Ore Metals between Magmatic Brine and Vapor - a Fluid Inclusion Study Using Pixe Microanalysis, Econ. Geol., 87, 1566, 10.2113/gsecongeo.87.6.1566 Heinrich, 1999, Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions, Geology, 27, 755, 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2 Heinrich, 2004, Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits, Geology, 32, 761, 10.1130/G20629.1 Helgeson, 1992, Effects of complex-formation in flowing fluids on the hydrothermal solubilities of minerals as a function of fluid pressure and temperature in the critical and supercritical regions of the system H2O, Geochim. Cosmochim. Acta, 56, 3191, 10.1016/0016-7037(92)90297-V Hemley, 1986, Effect of pressure on ore mineral solubilities under hydrothermal conditions, Geology, 14, 377, 10.1130/0091-7613(1986)14<377:EOPOOM>2.0.CO;2 Hemley, 1992, Hydrothermal ore-forming processes in the light of studies in rock-buffered systems. I, Iron–copper–zinc–lead sulfide solubility relations, Econ. Geol., 87, 1, 10.2113/gsecongeo.87.1.1 Jayanetti, 2001, Analysis of radiation-induced small Cu particle cluster formation in aqueous CuCl2, J. Chem. Phys., 115, 954, 10.1063/1.1379758 Keller, 1946, Copper(I) chloride, vol. 2, 1 Knight, 1989, Synthetic fluid inclusions: IX. Critical PVTX properties of NaCl–H2O solutions, Geochim. Cosmochim. Acta, 53, 3, 10.1016/0016-7037(89)90267-6 Krabbes, 1977, Die Thermodynamik der Verdampfung der Kuper(I)-Halogenide, Z. anorg. allg. Chem., 435, 33, 10.1002/zaac.19774350104 Lemmon, E. W., McLinden, M. O., and Friend, D. G. (2000). Thermophysical properties of fluid systems. In: NIST Chemistry WebBook, NIST Standard Reference Database, vol. 69 (eds. Mallard, W. G., and Linstrom, P. J.). National Institute of Standards and Technology. Available from: (<http://webbook.nist.gov>). Lide, D. R. (2007). CRC Handbook of Chemistry and Physics, 88th ed. Liu, 2005, Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions, Chem. Geol., 221, 21, 10.1016/j.chemgeo.2005.04.009 Liu, 2001, An experimental study of copper(I)-chloride and copper(I)-acetate complexing in hydrothermal solutions between 50°C and 250°C and vapor-saturated pressure, Geochim. Cosmochim. Acta, 65, 2937, 10.1016/S0016-7037(01)00631-7 Liu, 2002, A spectrophotometric study of aqueous copper(I)-chloride complexes in LiCl solutions between 100°C and 250°C, Geochim. Cosmochim. Acta, 66, 3615, 10.1016/S0016-7037(02)00942-0 Lowenstern, 1991, Evidence for extreme partitioning of copper into a magmatic vapor-phase, Science, 252, 1405, 10.1126/science.252.5011.1405 Martynova, 1964, Some problems concerning the solubility of low volatile inorganic compounds in water vapor at high temperatures and pressures, Russ. J. Phys. Chem., 38, 587 Mavrogenes, 2002, Copper speciation in vapor-phase fluid inclusions from the mole granite, Australia, Am. Mineral., 87, 1360, 10.2138/am-2002-1011 Mesmer, 1988, Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures, J. Sol. Chem., 17, 699, 10.1007/BF00647417 Mesu, 2005, Synchrotron radiation effects on catalytic systems as probed with a combined in-situ UV–vis/XAFS spectroscopic setup, J. Phys. Chem., B109, 4042, 10.1021/jp045206r Migdisov, 1999, Solubility of chlorargyrite (AgCl) in water vapor at elevated temperatures and pressures, Geochim. Cosmochim. Acta, 63, 3817, 10.1016/S0016-7037(99)00213-6 Mikucki, 1993, The hydrothermal fluid of archaean lode-gold deposits at different metamorphic grades: compositional constraints from ore and wallrock alteration assemblages, Miner. Deposita, 28, 469, 10.1007/BF02431603 Mountain, 1999, The hydrosulphide sulphide complexes of copper(I): experimental determination of stoichiometry and stability at 22°C and reassessment of high temperature data, Geochim. Cosmochim. Acta, 63, 11, 10.1016/S0016-7037(98)00288-9 Mountain, 2003, Hydrosulfide/sulfide complexes of copper(I): experimental confirmation of the stoichiometry and stability of cu(hs)(2)(-) to elevated temperatures, Geochim. Cosmochim. Acta, 67, 3005, 10.1016/S0016-7037(03)00303-X Nagaseki, 2008, Experimental study of the behavior of copper and zinc in a boiling hydrothermal system, Geology, 36, 27, 10.1130/G24173A.1 Palmer, 2004, Partitioning of electrolytes to steam and their solubilities in steam, 409 Pokrovski, 2005, Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems, Geology, 33, 657, 10.1130/G21475.1 Pokrovski, 2005, An X-ray absorption spectroscopy study of argutite solubility and aqueous Ge(IV) speciation in hydrothennal fluids to 500°C and 400bar, Chem. Geol., 217, 127, 10.1016/j.chemgeo.2005.01.006 Pokrovski, 2008, The effect of sulfur on vapor–liquid fractionation of metals in hydrothermal systems, Earth Planet. Sci. Lett., 266, 345, 10.1016/j.epsl.2007.11.023 Prest, 1996, A coordination polymer based on a CuI-4,4′-bipyridine complex, Acta Crystallograph., C52, 2176 Proux, 2005, FAME: a new beamline for X-ray absorption investigations of very diluted systems of environmental, material and biological interests, Phys. Scripta, T115, 970, 10.1238/Physica.Topical.115a00970 Ravel, 2005, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719 Rusk, 2002, Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana, Geology, 30, 727, 10.1130/0091-7613(2002)030<0727:SEMCAO>2.0.CO;2 Sandler, 2006 Schmidt, 2003, In-situ determination of mineral solubilities in fluids using a hydrothermal diamond-anvil cell and SR-XRF: solubility of AgCl in water, Am. Mineral., 88, 288, 10.2138/am-2003-2-305 Seward, 1997, Metal transport by hydrothermal ore fluids, 435 Seward, 2004, Hydrothermal solution structure: experiments and computer simulations, 149 Seward, 1996, An X-ray absorption (EXAFS) spectroscopic study of aquated Ag+ in hydrothermal solutions to 350°C, Geochim. Cosmochim. Acta, 60, 2273, 10.1016/0016-7037(96)00098-1 Seyfried, 1993, The effect of redox on the relative solubilities of copper and iron in Cl-bearing aqueous fluids at elevated temperatures and pressures: an experimental study with application to subseafloor hydrothermal systems, Geochim. Cosmochim. Acta, 57, 1905, 10.1016/0016-7037(93)90083-9 Sherman, 2007, Complexation of Cu+ in hydrothermal NaCl brines: Ab initio molecular dynamics and energetics, Geochim. Cosmochim. Acta, 71, 714, 10.1016/j.gca.2006.09.015 Shock, 1997, Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes, Geochim. Cosmochim. Acta, 61, 907, 10.1016/S0016-7037(96)00339-0 Shvarov Y. V. and Bastrakov E. N. (1999). HCh, a software Package for Geochemical Equlibrium Modeling: User’s Guide. Record 1999/25. Australian Geological Survey Organisation. Simon, 2006, Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage, Geochim. Cosmochim. Acta, 70, 5583, 10.1016/j.gca.2006.08.045 Susak, 1985, Spectra and coordination changes of transition metals in hydrothermal solutions: implications for ore genesis, Geochim. Cosmochim. Acta, 49, 555, 10.1016/0016-7037(85)90047-X Sverjensky, 1997, Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5kb, Geochim. Cosmochim. Acta, 61, 1359, 10.1016/S0016-7037(97)00009-4 Tanger, 1988, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for the standard partial molal properties of ions and electrolytes, Am. J. Sci., 288, 19, 10.2475/ajs.288.1.19 Testemale, 2005, High pressure high temperature cell for X-ray absorption and scattering techniques, Rev. Sci. Instrum., 76, 043905, 10.1063/1.1884188 Ulrich, 1999, Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits, Nature, 399, 676, 10.1038/21406 Var’yash, 1992, Cu(I) complexing in NaCl solutions at 300 and 350°C, Geochem. Int., 29, 84 Von Damm, K. L. 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Seafloor hydrothermal systems; physical, chemical, biological, and geological interactions, Geophysical Monograph, vol. 91, (eds. Humphris, S. E. e., Zierenberg, R. A. e., Mullineaux, L. S. e., Thomson, R. E. e.) pp. 222–247. Von Damm, 2003, Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise, Earth Planet. Sci. Lett., 206, 365, 10.1016/S0012-821X(02)01081-6 Wang, 2004, Modeling phase equilibria and speciation in mixed-solvent electrolyte systems, Fluid Phase Equilibr., 222, 11, 10.1016/j.fluid.2004.06.008 Williams, 1995, The partitioning of copper between silicate melts and two-phase aqueous fluids; an experimental investigation at 1kbar, 800°C and 0.5kbar, 850°C, Contrib. Mineral. Petr., 121, 388, 10.1007/s004100050104 Williams-Jones, 2005, 100th Anniversary special paper: vapor transport of metals and the formation of magmatic-hydrothermal ore deposits, Econ. Geol., 100, 1287, 10.2113/gsecongeo.100.7.1287 Williams-Jones, A. E., Migdisov, A. A., Archibald, S. M., and Xiao, Z. (2002). Vapor-transport of ore metals. In Water–Rock Interactions, Ore deposits, and Environmental Geochemistry: A Tribute to David A. Crerar (eds. R. Hellmann and S. A. Wood), Geochemical Society, pp. 279–305. Xiao, 1998, Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300°C and saturated water vapor pressure, Geochim. Cosmochim. Acta, 62, 2949, 10.1016/S0016-7037(98)00228-2