The skin microbiome

Nature Reviews Microbiology - Tập 9 Số 4 - Trang 244-253 - 2011
Elizabeth A. Grice1, Julia A. Segre2
1Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-4442 USA.
2Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chiller, K., Selkin, B. A. & Murakawa, G. J. Skin microflora and bacterial infections of the skin. J. Investig. Dermatol. Symp. Proc. 6, 170–174 (2001).

Fredricks, D. N. Microbial ecology of human skin in health and disease. J. Investig. Dermatol. Symp. Proc. 6, 167–169 (2001).

Marples, M. The Ecology of the Human Skin (Charles C Thomas, Bannerstone House, Springfield, Illinois, 1965). A seminal and comprehensive work of classical dermatological microbiology.

Roth, R. R. & James, W. D. Microbial ecology of the skin. Annu. Rev. Microbiol. 42, 441–464 (1988).

Noble, W. C. Skin microbiology: coming of age. J. Med. Microbiol. 17, 1–12 (1984).

Roth, R. R. & James, W. D. Microbiology of the skin: resident flora, ecology, infection. J. Am. Acad. Dermatol. 20, 367–390 (1989).

Cogen, A. L., Nizet, V. & Gallo, R. L. Skin microbiota: a source of disease or defence? Br. J. Dermatol. 158, 442–455 (2008).

Tagami, H. Location-related differences in structure and function of the stratum corneum with special emphasis on those of the facial skin. Int. J. Cosmet Sci. 30, 413–434 (2008).

Proksch, E., Brandner, J. M. & Jensen, J. M. The skin: an indispensable barrier. Exp. Dermatol. 17, 1063–1072 (2008).

Elias, P. M. The skin barrier as an innate immune element. Semin. Immunopathol. 29, 3–14 (2007).

Segre, J. A. Epidermal barrier formation and recovery in skin disorders. J. Clin. Invest. 116, 1150–1158 (2006).

Fuchs, E. & Raghavan, S. Getting under the skin of epidermal morphogenesis. Nature Rev. Genet. 3, 199–209 (2002).

Leeming, J. P., Holland, K. T. & Cunliffe, W. J. The microbial ecology of pilosebaceous units isolated from human skin. J. Gen. Microbiol. 130, 803–807 (1984).

Cohn, B. A. In search of human skin pheromones. Arch. Dermatol. 130, 1048–1051 (1994).

Emter, R. & Natsch, A. The sequential action of a dipeptidase and a β-lyase is required for the release of the human body odorant 3-methyl-3-sulfanylhexan-1-ol from a secreted Cys-Gly-(S) conjugate by Corynebacteria. J. Biol. Chem. 283, 20645–20652 (2008).

Decreau, R. A., Marson, C. M., Smith, K. E. & Behan, J. M. Production of malodorous steroids from androsta-5,16-dienes and androsta-4,16-dienes by Corynebacteria and other human axillary bacteria. J. Steroid Biochem. Mol. Biol. 87, 327–336 (2003).

Martin, A. et al. A functional ABCC11 allele is essential in the biochemical formation of human axillary odor. J. Invest. Dermatol. 130, 529–540 (2010).

Natsch, A., Gfeller, H., Gygax, P., Schmid, J. & Acuna, G. A specific bacterial aminoacylase cleaves odorant precursors secreted in the human axilla. J. Biol. Chem. 278, 5718–5727 (2003).

Bruggemann, H. et al. The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305, 671–673 (2004).

Marples, R. R., Downing, D. T. & Kligman, A. M. Control of free fatty acids in human surface lipids by Corynebacterium acnes. J. Invest. Dermatol. 56, 127–131 (1971).

Ingham, E., Holland, K. T., Gowland, G. & Cunliffe, W. J. Partial purification and characterization of lipase (EC 3.1.1.3) from Propionibacterium acnes. J. Gen. Microbiol. 124, 393–401 (1981).

Gribbon, E. M., Cunliffe, W. J. & Holland, K. T. Interaction of Propionibacterium acnes with skin lipids in vitro. J. Gen. Microbiol. 139, 1745–1751 (1993).

Korting, H. C., Hubner, K., Greiner, K., Hamm, G. & Braun-Falco, O. Differences in the skin surface pH and bacterial microflora due to the long-term application of synthetic detergent preparations of pH 5.5 and pH 7.0. Results of a crossover trial in healthy volunteers. Acta Derm. Venereol. 70, 429–431 (1990).

Aly, R., Shirley, C., Cunico, B. & Maibach, H. I. Effect of prolonged occlusion on the microbial flora, pH, carbon dioxide and transepidermal water loss on human skin. J. Invest. Dermatol. 71, 378–381 (1978).

Hentges, D. J. The anaerobic microflora of the human body. Clin. Infect. Dis. 16, S175–S180 (1993).

Webster, G. F., Ruggieri, M. R. & McGinley, K. J. Correlation of Propionibacterium acnes populations with the presence of triglycerides on nonhuman skin. Appl. Environ. Microbiol. 41, 1269–1270 (1981).

Leyden, J. J., McGinley, K. J., Mills, O. H. & Kligman, A. M. Age-related changes in the resident bacterial flora of the human face. J. Invest. Dermatol. 65, 379–381 (1975).

Somerville, D. A. The normal flora of the skin in different age groups. Br. J. Dermatol. 81, 248–258 (1969).

Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

Sarkany, I. & Gaylarde, C. C. Bacterial colonisation of the skin of the newborn. J. Pathol. Bacteriol. 95, 115–122 (1968).

Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

Marples, R. R. Sex, constancy, and skin bacteria. Arch. Dermatol. Res. 272, 317–320 (1982).

Fierer, N., Hamady, M., Lauber, C. L. & Knight, R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl Acad. Sci. USA 105, 17994–17999 (2008).

Giacomoni, P. U., Mammone, T. & Teri, M. Gender-linked differences in human skin. J. Dermatol. Sci. 55, 144–149 (2009).

Dethlefsen, L. & Relman, D. A. Microbes and Health Sackler Colloquium: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 16 Sep 2010 (doi:10.1073/pnas.1000087107).

Antonopoulos, D. A. et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect. Immun. 77, 2367–2375 (2009).

Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008).

McBride, M. E., Duncan, W. C. & Knox, J. M. The environment and the microbial ecology of human skin. Appl. Environ. Microbiol. 33, 603–608 (1977).

Faergemann, J. & Larko, O. The effect of UV-light on human skin microorganisms. Acta Derm. Venereol. 67, 69–72 (1987).

Gao, Z., Tseng, C. H., Pei, Z. & Blaser, M. J. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl Acad. Sci. USA 104, 2927–2932 (2007).

Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).

Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009). A comprehensive analysis of skin microbiota across 20 sites.

Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009). A comprehensive analysis of skin, gut and oral microbiota in the same individuals.

Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

Dewhirst, F. E. et al. The human oral microbiome. J. Bacteriol. 192, 5002–5017 (2010).

Zaura, E., Keijser, B. J., Huse, S. M. & Crielaard, W. Defining the healthy 'core microbiome' of oral microbial communities. BMC Microbiol. 9, 259 (2009).

Bik, E. M. et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 4, 962–974 (2010).

Pei, Z. et al. Bacterial biota in the human distal esophagus. Proc. Natl Acad. Sci. USA 101, 4250–4255 (2004).

Bik, E. M. et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA 103, 732–737 (2006).

Leyden, J. J., McGinley, K. J., Holzle, E., Labows, J. N. & Kligman, A. M. The microbiology of the human axilla and its relationship to axillary odor. J. Invest. Dermatol. 77, 413–416 (1981).

Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). An important study demonstrating the functional potential of the human microbiome.

James, T. Y. et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443, 818–822 (2006).

Chase, M. W. & Fay, M. F. Ecology. Barcoding of plants and fungi. Science 325, 682–683 (2009).

Paulino, L. C., Tseng, C. H. & Blaser, M. J. Analysis of Malassezia microbiota in healthy superficial human skin and in psoriatic lesions by multiplex real-time PCR. FEMS Yeast Res. 8, 460–471 (2008).

Paulino, L. C., Tseng, C. H., Strober, B. E. & Blaser, M. J. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J. Clin. Microbiol 44, 2933–2941 (2006).

Gao, Z., Perez-Perez, G. I., Chen, Y. & Blaser, M. J. Quantitation of major human cutaneous bacterial and fungal populations. J. Clin. Microbiol. 48, 3575–3581 (2010).

Peleg, A. Y., Hogan, D. A. & Mylonakis, E. Medically important bacterial-fungal interactions. Nature Rev. Microbiol. 8, 340–349 (2010). This review describes the clinical and molecular characteristics of bacterium–fungus interactions that are relevant to human disease with a focus on Candida spp..

Lacey, N., Delaney, S., Kavanagh, K. & Powell, F. C. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br. J. Dermatol. 157, 474–481 (2007).

Georgala, S. et al. Increased density of Demodex folliculorum and evidence of delayed hypersensitivity reaction in subjects with papulopustular rosacea. J. Eur. Acad. Dermatol. Venereol. 15, 441–444 (2001).

Elston, D. M. Demodex mites: facts and controversies. Clin. Dermatol. 28, 502–504 (2010).

Hay, R. Demodex and skin infection: fact or fiction. Curr. Opin. Infect. Dis. 23, 103–105 (2010).

Schowalter, R. M., Pastrana, D. V., Pumphrey, K. A., Moyer, A. L. & Buck, C. B. Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe 7, 509–515 (2010). An investigation of the preponderance of Merkel cell polyomavirus, and a methodology to isolate circular DNA viral genomes from human skin swabs.

Borkowski, A. W. & Gallo, R. L. The coordinated response of the physical and antimicrobial peptide barriers of the skin. J. Invest. Dermatol. 131, 285–287 (2011).

Braff, M. H., Bardan, A., Nizet, V. & Gallo, R. L. Cutaneous defence mechanisms by antimicrobial peptides. J. Invest. Dermatol. 125, 9–13 (2005).

Strober, W. Epithelial cells pay a Toll for protection. Nature Med. 10, 898–900 (2004).

Fukao, T. & Koyasu, S. PI3K and negative regulation of TLR signaling. Trends Immunol. 24, 358–363 (2003).

Cogen, A. L. et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol. 130, 192–200 (2010).

Cogen, A. L. et al. Staphylococcus epidermidis antimicrobial δ -toxin (phenol-soluble modulin-γ) cooperates with host antimicrobial peptides to kill Group A Streptococcus. PLoS ONE 5, e8557 (2010).

Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nature Med. 15, 1377–1382 (2009). This analysis demonstrated that products of a skin commensal can modulate the innate immune response.

Lai, Y. et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defence against bacterial skin infections. J. Invest. Dermatol. 130, 2211–2221 (2010).

Nomura, I. et al. Distinct patterns of gene expression in the skin lesions of atopic dermatitis and psoriasis: a gene microarray analysis. J. Allergy Clin. Immunol. 112, 1195–1202 (2003).

Nomura, I. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 171, 3262–3269 (2003).

Gudjonsson, J. E. et al. Global gene expression analysis reveals evidence for decreased lipid biosynthesis and increased innate immunity in uninvolved psoriatic skin. J. Invest. Dermatol. 129, 2795–2804 (2009).

Ong, P. Y. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 347, 1151–1160 (2002).

de Jongh, G. J. et al. High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. J. Invest. Dermatol. 125, 1163–1173 (2005).

Owen, C. M., Chalmers, R. J., O'Sullivan, T. & Griffiths, C. E. A systematic review of antistreptococcal interventions for guttate and chronic plaque psoriasis. Br. J. Dermatol. 145, 886–890 (2001).

Pierard, G. E., Arrese, J. E., Pierard-Franchimont, C. & De Doncker, P. Prolonged effects of antidandruff shampoos — time to recurrence of Malassezia ovalis colonization of skin. Int. J. Cosmet. Sci. 19, 111–117 (1997).

Leyden, J. J., McGinley, K. J. & Kligman, A. M. Role of microorganisms in dandruff. Arch. Dermatol. 112, 333–338 (1976).

Gupta, A. K., Batra, R., Bluhm, R., Boekhout, T. & Dawson, T. L. Jr. Skin diseases associated with Malassezia species. J. Am. Acad. Dermatol. 51, 785–798 (2004).

Dessinioti, C. & Katsambas, A. D. The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin. Dermatol. 28, 2–7 (2010).

Scott, D. G., Cunliffe, W. J. & Gowland, G. Activation of complement — a mechanism for the inflammation in acne. Br. J. Dermatol. 101, 315–320 (1979).

Webster, G. F., Leyden, J. J. & Nilsson, U. R. Complement activation in acne vulgaris: consumption of complement by comedones. Infect. Immun. 26, 183–186 (1979).

Jeremy, A. H., Holland, D. B., Roberts, S. G., Thomson, K. F. & Cunliffe, W. J. Inflammatory events are involved in acne lesion initiation. J. Invest. Dermatol. 121, 20–27 (2003).

Kim, J. Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology 211, 193–198 (2005).

Puhvel, S. M. & Sakamoto, M. Cytotaxin production by comedonal bacteria (Propionibacterium acnes, Propionibacterium granulosum and Staphylococcus epidermidis). J. Invest. Dermatol. 74, 36–39 (1980).

Webster, G. F. & Leyden, J. J. Characterization of serum-independent polymorphonuclear leukocyte chemotactic factors produced by Propionibacterium acnes. Inflammation 4, 261–269 (1980).

Bek-Thomsen, M., Lomholt, H. B. & Kilian, M. Acne is not associated with yet-uncultured bacteria. J. Clin. Microbiol. 46, 3355–3360 (2008).

Hanifin, J. M. & Rogge, J. L. Staphylococcal infections in patients with atopic dermatitis. Arch. Dermatol. 113, 1383–1386 (1977).

Leyden, J. J., Marples, R. R. & Kligman, A. M. Staphylococcus aureus in the lesions of atopic dermatitis. Br. J. Dermatol. 90, 525–530 (1974).

Huang, J. T., Abrams, M., Tlougan, B., Rademaker, A. & Paller, A. S. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics 123, e808–e814 (2009).

Aioi, A. et al. Impairment of skin barrier function in NC/Nga Tnd mice as a possible model for atopic dermatitis. Br. J. Dermatol. 144, 12–18 (2001).

Terada, M. et al. Contribution of IL-18 to atopic-dermatitis-like skin inflammation induced by Staphylococcus aureus product in mice. Proc. Natl Acad. Sci. USA 103, 8816–8821 (2006).

Frank, D. N. et al. Microbial diversity in chronic open wounds. Wound Repair Regen. 17, 163–172 (2009).

Dowd, S. E. et al. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 8, 43 (2008).

Smith, D. M. et al. Evaluation of the bacterial diversity of Pressure ulcers using bTEFAP pyrosequencing. BMC Med. Genomics 3, 41 (2010).

Price, L. B. et al. Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS ONE 4, e6462 (2009).

Polavarapu, N., Ogilvie, M. P. & Panthaki, Z. J. Microbiology of burn wound infections. J. Craniofac. Surg. 19, 899–902 (2008).

Grice, E. A. et al. Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defence response. Proc. Natl Acad. Sci. USA 107, 14799–14804 (2010). This study showed that a selective shift in microbiota is associated with an altered innate immune response.

Uckay, I. et al. Foreign body infections due to Staphylococcus epidermidis. Ann. Med. 41, 109–119 (2009).

Otto, M. Staphylococcus epidermidis — the 'accidental' pathogen. Nature Rev. Microbiol. 7, 555–567 (2009).

Peterson, J. et al. The NIH Human Microbiome Project. Genome Res. 19, 2317–2323 (2009). A detailed description of the Human Microbiome Project and its objectives.

Iwase, T. et al. Staphylococcus epidermidis esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465, 346–349 (2010). An important paper demonstrating the mechanism by which S. epidermidis inhibits S. aureus colonization of the nare.

Dunbar, J., Barns, S. M., Ticknor, L. O. & Kuske, C. R. Empirical and theoretical bacterial diversity in four Arizona soils. Appl. Environ. Microbiol. 68, 3035–3045 (2002).

Bowler, P. G., Duerden, B. I. & Armstrong, D. G. Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 14, 244–269 (2001).

Davies, C. E. et al. Use of molecular techniques to study microbial diversity in the skin: chronic wounds reevaluated. Wound Repair Regen. 9, 332–340 (2001).

Hugenholtz, P. & Pace, N. R. Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol. 14, 190–197 (1996).