The sites and topology of mitochondrial superoxide production

Experimental Gerontology - Tập 45 Số 7-8 - Trang 466-472 - 2010
Martin D. Brand1
1Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andreyev, 2005, Mitochondrial metabolism of reactive oxygen species, Biochemistry, 70, 200

Aon, 2003, Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes, J. Biol. Chem., 278, 44735, 10.1074/jbc.M302673200

Babior, 2002, The neutrophil NADPH oxidase, Arch. Biochem. Biophys., 397, 342, 10.1006/abbi.2001.2642

Barja, 1999, Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity, J. Bioenerg. Biomembr., 31, 347, 10.1023/A:1005427919188

Barja, 2002, The quantitative measurement of H2O2 generation in isolated mitochondria, J. Bioenerg. Biomembr., 34, 227, 10.1023/A:1016039604958

Barja, 1994, Low mitochondrial free radical production per unit O2 consumption can explain the simultaneous presence of high longevity and high aerobic metabolic rate in birds, Free Radical Res., 21, 317, 10.3109/10715769409056584

Barrientos, 1999, Titrating the effects of mitochondrial complex I impairment in the cell physiology, J. Biol. Chem., 274, 16188, 10.1074/jbc.274.23.16188

Beckman, 1998, The free radical theory of aging matures, Physiol. Rev., 78, 547, 10.1152/physrev.1998.78.2.547

Boveris, 1973, The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen, Biochem. J., 134, 707, 10.1042/bj1340707

Boveris, 1972, The cellular production of hydrogen peroxide, Biochem. J., 128, 617, 10.1042/bj1280617

Brand, 2000, Uncoupling to survive? The role of mitochondrial inefficiency in ageing, Exp. Gerontol., 35, 811, 10.1016/S0531-5565(00)00135-2

Brand, 2004, Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins, Free Radical Biol. Med., 37, 755, 10.1016/j.freeradbiomed.2004.05.034

Cadenas, 2000, Mitochondrial free radical generation, oxidative stress, and aging, Free Radical Biol. Med., 29, 222, 10.1016/S0891-5849(00)00317-8

Cadenas, 1977, Production of superoxide radicals and hydrogen peroxide by NADH–ubiquinone reductase and ubiquinol–cytochrome c reductase from beef-heart mitochondria, Arch. Biochem. Biophys., 180, 248, 10.1016/0003-9861(77)90035-2

Cape, 2007, A semiquinone intermediate generated at the Q0 site of the cytochrome bc1 complex: importance for the Q-cycle and superoxide production, Proc. Natl. Acad. Sci. USA, 104, 7887, 10.1073/pnas.0702621104

Caro, 2004, Oxidative stress, toxicology, and pharmacology of CYP2E1, Annu. Rev. Pharmacol. Toxicol., 44, 27, 10.1146/annurev.pharmtox.44.101802.121704

Chance, 1979, Hydroperoxide metabolism in mammalian organs, Physiol. Rev., 59, 527, 10.1152/physrev.1979.59.3.527

Chandel, 1998, Mitochondrial reactive oxygen species trigger hypoxia-induced transcription, Proc. Natl. Acad. Sci. USA, 95, 11715, 10.1073/pnas.95.20.11715

Chen, 2003, Production of reactive oxygen species by mitochondria: central role of complex III, J. Biol. Chem., 278, 36027, 10.1074/jbc.M304854200

Chinta, 2009, Reactive oxygen species regulation by AIF- and complex I-depleted brain mitochondria, Free Radical Biol. Med., 46, 939, 10.1016/j.freeradbiomed.2009.01.010

Degli Esposti, 1998, Inhibitors of NADH–ubiquinone reductase: an overview, Biochim. Biophys. Acta, 1364, 222, 10.1016/S0005-2728(98)00029-2

Dillin, 2002, Rates of behavior and aging specified by mitochondrial function during development, Science, 298, 2398, 10.1126/science.1077780

Drahota, 2002, Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide, J. Bioenerg. Biomembr., 34, 105, 10.1023/A:1015123908918

Drose, 2008, The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex, J. Biol. Chem., 283, 21649, 10.1074/jbc.M803236200

Erecinska, 1976, The effect of antimycin A on cytochromes b561, b566, and their relationship to ubiquinone and the iron–sulfur centers S−1 (+N−2) and S−3, Arch. Biochem. Biophys., 174, 143, 10.1016/0003-9861(76)90333-7

Fang, 2003, External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide, Free Radical Biol. Med., 34, 478, 10.1016/S0891-5849(02)01328-X

Finkel, 2000, Oxidants, oxidative stress and the biology of ageing, Nature, 408, 239, 10.1038/35041687

Gazaryan, 2002, Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase, J. Biol. Chem., 277, 10064, 10.1074/jbc.M108264200

Genova, 2001, The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron–sulfur cluster N2, FEBS Lett., 505, 364, 10.1016/S0014-5793(01)02850-2

Golden, 2002, Oxidative stress and aging: beyond correlation, Aging Cell, 1, 117, 10.1046/j.1474-9728.2002.00015.x

Gyulkhandanyan, 2004, Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress, J. Neurochem., 90, 405, 10.1111/j.1471-4159.2004.02489.x

Halliwell, 1999

Han, 2001, Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space, Biochem. J., 353, 411, 10.1042/0264-6021:3530411

Han, 2003, Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria, Mol. Pharmacol., 64, 1136, 10.1124/mol.64.5.1136

Hansford, 1997, Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age, J. Bioenerg. Biomembr., 29, 89, 10.1023/A:1022420007908

Harman, 1972, The biologic clock: the mitochondria?, J. Am. Geriat. Soc., 20, 145, 10.1111/j.1532-5415.1972.tb00787.x

Herrero, 1997, Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon, Mech. Ageing Dev., 98, 95, 10.1016/S0047-6374(97)00076-6

Herrero, 2000, Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria, J. Bioenerg. Biomembr., 32, 609, 10.1023/A:1005626712319

Hinkle, 1967, Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin–cytochrome b region of the respiratory chain of beef heart submitochondrial particles, J. Biol. Chem., 242, 5169, 10.1016/S0021-9258(18)99410-X

Hirst, 2008, The production of reactive oxygen species by complex I, Biochem. Soc. Trans., 36, 976, 10.1042/BST0360976

Ho, 1998, Reduced fertility in female mice lacking copper–zinc superoxide dismutase, J. Biol. Chem., 273, 7765, 10.1074/jbc.273.13.7765

Hoffman, 2009, Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions, J. Biol. Chem., 284, 16236, 10.1074/jbc.M809512200

Iwata, 1998, Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex, Science, 281, 64, 10.1126/science.281.5373.64

Jekabsons, 2006, Bioenergetic analysis of cerebellar granule neurons undergoing apoptosis by potassium/serum deprivation, Cell Death Differ., 13, 1595, 10.1038/sj.cdd.4401851

Jensen, 1966, Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation, Biochim. Biophys. Acta, 122, 157, 10.1016/0926-6593(66)90057-9

Jezek, 2005, Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism, Int. J. Biochem. Cell Biol., 37, 2478, 10.1016/j.biocel.2005.05.013

Johnson, 2003, NADH–ubiquinone oxidoreductase: substrate-dependent oxygen turnover to superoxide anion as a function of flavin mononucleotide, Mitochondrion, 3, 97, 10.1016/S1567-7249(03)00084-9

Johnson-Cadwell, 2007, ‘Mild uncoupling’ does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress, J. Neurochem., 101, 1619, 10.1111/j.1471-4159.2007.04516.x

Keaney, 2003, No increase in lifespan in Caenorhabditis elegans upon treatment with the superoxide dismutase mimetic EUK-8, Free Radical Biol. Med., 34, 277, 10.1016/S0891-5849(02)01290-X

Korshunov, 1997, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15, 10.1016/S0014-5793(97)01159-9

Ksenzenko, 1983, Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc1 site of the mitochondrial respiratory chain, FEBS Lett., 155, 19, 10.1016/0014-5793(83)80200-2

Ku, 1993, Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species, Free Radical Biol. Med., 15, 621, 10.1016/0891-5849(93)90165-Q

Kudin, 2004, Characterization of superoxide-producing sites in isolated brain mitochondria, J. Biol. Chem., 279, 4127, 10.1074/jbc.M310341200

Kushnareva, 2002, Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation–reduction state, Biochem. J., 368, 545, 10.1042/bj20021121

Kussmaul, 2006, The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria, Proc. Natl. Acad. Sci. USA, 103, 7607, 10.1073/pnas.0510977103

Kwong, 1998, Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria, Arch. Biochem. Biophys., 350, 118, 10.1006/abbi.1997.0489

Lambert, 2004, Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I), J. Biol. Chem., 279, 39414, 10.1074/jbc.M406576200

Lambert, 2004, Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane, Biochem. J., 382, 511, 10.1042/BJ20040485

Lambert, 2007, Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms, Aging Cell, 6, 607, 10.1111/j.1474-9726.2007.00312.x

Lambert, 2008, Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport, Biochim. Biophys. Acta, 1777, 397, 10.1016/j.bbabio.2008.03.005

Lambert, 2008, Dissociation of superoxide production by mitochondrial complex I from NAD(P)H redox state, FEBS Lett., 582, 1711, 10.1016/j.febslet.2008.04.030

Lebovitz, 1996, Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice, Proc. Natl. Acad. Sci. USA, 93, 9782, 10.1073/pnas.93.18.9782

Lee, 2003, A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity, Nat. Genet., 33, 40, 10.1038/ng1056

Li, 1998, Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production, Biochem. Biophys. Res. Commun., 253, 295, 10.1006/bbrc.1998.9729

Li, 1995, Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase, Nat. Genet., 11, 376, 10.1038/ng1295-376

Li, 2003, Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production, J. Biol. Chem., 278, 8516, 10.1074/jbc.M210432200

Liu, 1997, Generating, partitioning, targeting and functioning of superoxide in mitochondria, Biosci. Rep., 17, 259, 10.1023/A:1027328510931

Liu, 2002, Generation of reactive oxygen species by the mitochondrial electron transport chain, J. Neurochem., 80, 780, 10.1046/j.0022-3042.2002.00744.x

McLennan, 2000, The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species, J. Bioenerg. Biomembr., 32, 153, 10.1023/A:1005507913372

Melov, 2000, Extension of life-span with superoxide dismutase/catalase mimetics, Science, 289, 1567, 10.1126/science.289.5484.1567

Messner, 2002, Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase, J. Biol. Chem., 277, 42563, 10.1074/jbc.M204958200

Miwa, 2005, The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria, Biochim. Biophys. Acta, 1709, 214, 10.1016/j.bbabio.2005.08.003

Miwa, 2003, Superoxide and hydrogen peroxide production by Drosophila mitochondria, Free Radical Biol. Med., 35, 938, 10.1016/S0891-5849(03)00464-7

Mukhopadhyay, 2007, Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy, Nat. Protoc., 2, 2295, 10.1038/nprot.2007.327

Muller, 2004, Complex III releases superoxide to both sides of the inner mitochondrial membrane, J. Biol. Chem., 279, 49064, 10.1074/jbc.M407715200

Muller, 2007, Trends in oxidative aging theories, Free Radical Biol. Med., 43, 477, 10.1016/j.freeradbiomed.2007.03.034

Muller, 2008, High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates, Biochem. J., 409, 491, 10.1042/BJ20071162

Murphy, 2009, How mitochondria produce reactive oxygen species, Biochem. J., 417, 1, 10.1042/BJ20081386

Nakamura, 2001, Tetrahydrobiopterin scavenges superoxide in dopaminergic neurons, J. Biol. Chem., 276, 34402, 10.1074/jbc.M103766200

Ohnishi, 2005, A possible site of superoxide generation in the complex I segment of rat heart mitochondria, J. Bioenerg. Biomembr., 37, 1, 10.1007/s10863-005-4117-y

Parthasarathi, 2002, Mitochondrial reactive oxygen species regulate spatial profile of proinflammatory responses in lung venular capillaries, J. Immunol., 169, 7078, 10.4049/jimmunol.169.12.7078

Perez, 2009, The overexpression of major antioxidant enzymes does not extend the lifespan of mice, Aging Cell, 8, 73, 10.1111/j.1474-9726.2008.00449.x

Quillet-Mary, 1997, Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis, J. Biol. Chem., 272, 21388, 10.1074/jbc.272.34.21388

Raha, 2000, Mitochondria, oxygen free radicals, disease and ageing, Trends Biochem. Sci., 25, 502, 10.1016/S0968-0004(00)01674-1

Raha, 2000, Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase, Free Radical Biol. Med., 29, 170, 10.1016/S0891-5849(00)00338-5

Rustin, 2002, Succinate dehydrogenase and human diseases: new insights into a well-known enzyme, Eur. J. Hum. Genet., 10, 289, 10.1038/sj.ejhg.5200793

Sanz, 2006, Is the mitochondrial free radical theory of aging intact?, Antioxid. Redox Signaling, 8, 582, 10.1089/ars.2006.8.582

Schuchmann, 2000, Increased mitochondrial superoxide generation in neurons from trisomy 16 mice: a model of Down’s syndrome, Free Radical Biol. Med., 28, 235, 10.1016/S0891-5849(99)00226-9

Sekhar, 1987, Generation of hydrogen peroxide by brown adipose tissue mitochondria, J. Bioenerg. Biomembr., 19, 397, 10.1007/BF00768542

Senoo-Matsuda, 2001, A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans, J. Biol. Chem., 276, 41553, 10.1074/jbc.M104718200

Seto, 1990, Overexpression of Cu–Zn superoxide dismutase in Drosophila does not affect life-span, Proc. Natl. Acad. Sci. USA, 87, 4270, 10.1073/pnas.87.11.4270

Sharma, 2009, Mitochondrial respiratory complex I: structure, function and implication in human diseases, Curr. Med. Chem., 16, 1266, 10.2174/092986709787846578

Shigenaga, 1994, Oxidative damage and mitochondrial decay in aging, Proc. Natl. Acad. Sci. USA, 91, 10771, 10.1073/pnas.91.23.10771

Siraki, 2002, Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes, Free Radical Biol. Med., 32, 2, 10.1016/S0891-5849(01)00764-X

Skulachev, 1996, Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants, Q. Rev. Biophys., 29, 169, 10.1017/S0033583500005795

Sohal, 1996, Oxidative stress, caloric restriction, and aging, Science, 273, 59, 10.1126/science.273.5271.59

Song, 2007, Diabetic cardiomyopathy in OVE26 mice shows mitochondrial ROS production and divergence between in vivo and in vitro contractility, Rev. Diabet. Stud., 4, 159, 10.1900/RDS.2007.4.159

Starkov, 2004, Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species, J. Neurosci., 24, 7779, 10.1523/JNEUROSCI.1899-04.2004

St-Pierre, 2002, Topology of superoxide production from different sites in the mitochondrial electron transport chain, J. Biol. Chem., 277, 44784, 10.1074/jbc.M207217200

Sun, 2002, Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster, Genetics, 161, 661, 10.1093/genetics/161.2.661

Talbot, 2004, Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3, FEBS Lett., 556, 111, 10.1016/S0014-5793(03)01386-3

Tretter, 2004, Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase, J. Neurosci., 24, 7771, 10.1523/JNEUROSCI.1842-04.2004

Tretter, 2007, Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria, J. Neurochem., 100, 650, 10.1111/j.1471-4159.2006.04223.x

Turrens, 2003, Mitochondrial formation of reactive oxygen species, J. Physiol., 552, 335, 10.1113/jphysiol.2003.049478

Turrens, 1980, Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria, Biochem. J., 191, 421, 10.1042/bj1910421

Turrens, 1985, Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria, Arch. Biochem. Biophys., 237, 408, 10.1016/0003-9861(85)90293-0

Votyakova, 2001, ΔΨm-Dependent and -independent production of reactive oxygen species by rat brain mitochondria, J. Neurochem., 79, 266, 10.1046/j.1471-4159.2001.00548.x

Vrablic, 2001, Altered mitochondrial function and overgeneration of reactive oxygen species precede the induction of apoptosis by 1-O-octadecyl-2-methyl-rac-glycero-3-phosphocholine in p53-defective hepatocytes, FASEB J., 15, 1739, 10.1096/fj.00-0300com

Wardman, 2007, Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects, Free Radical Biol. Med., 43, 995, 10.1016/j.freeradbiomed.2007.06.026

Yeh, 2008, Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism, Proc. Natl. Acad. Sci. USA, 105, 3280, 10.1073/pnas.0712331105

Young, 2002, Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol, Arch. Biochem. Biophys., 405, 65, 10.1016/S0003-9861(02)00338-7

Zamzami, 1995, Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death, J. Exp. Med., 182, 367, 10.1084/jem.182.2.367

Zhang, 2000, Mitochondrial cytochrome bc1 complex, Subcell. Biochem., 35, 541, 10.1007/0-306-46828-X_16