The set of vertices with positive curvature in a planar graph with nonnegative curvature

Advances in Mathematics - Tập 343 - Trang 789-820 - 2019
Bobo Hua1,2, Yanhui Su3
1School of Mathematical Sciences, LMNS, Fudan University, Shanghai, 200433, China
2Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, 200433, China
3College of Mathematics and Computer Science, Fuzhou University, Fuzhou, 350116, China

Tài liệu tham khảo

Appel, 1977, Every planar map is four colorable. I. Discharging, Illinois J. Math., 21, 429 Alexandrov, 2005, Convex Polyhedra Babai, 1975, Automorphism groups of planar graphs. II, Colloq. Math. Soc. János Bolyai, 10, 29 Burago, 2001, A Course in Metric Geometry, vol. 33 Brinkmann, 1997, A constructive enumeration of fullerenes, J. Algorithms, 23, 345, 10.1006/jagm.1996.0806 Buchstaber, 2017, Finite sets of operations sufficient to construct any fullerene from C20, Struct. Chem., 28, 225, 10.1007/s11224-016-0885-8 Buchstaber, 2017, Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes, Izv. Ross. Akad. Nauk Ser. Mat., 81, 15 Brinkmann, 2012, The generation of fullerenes, J. Chem. Inf. Model., 52, 2910, 10.1021/ci3003107 Baues, 2001, Curvature and geometry of tessellating plane graphs, Discrete Comput. Geom., 25, 141, 10.1007/s004540010076 Baues, 2006, Geodesics in non-positively curved plane tessellations, Adv. Geom., 6, 243, 10.1515/ADVGEOM.2006.014 Conway, 2008 Chen, 2008, Gauss–Bonnet formula, finiteness condition, and characterizations of graphs embedded in surfaces, Graphs Combin., 24, 159, 10.1007/s00373-008-0782-z Chen, 2009, The Gauss–Bonnet formula of polytopal manifolds and the characterization of embedded graphs with nonnegative curvature, Proc. Amer. Math. Soc., 137, 1601, 10.1090/S0002-9939-08-09739-6 DeVos, 2007, An analogue of the Descartes–Euler formula for infinite graphs and Higuchi's conjecture, Trans. Amer. Math. Soc., 359, 3287, 10.1090/S0002-9947-07-04125-6 Galebach Ghidelli Gromov, 1987, Hyperbolic groups, vol. 8, 75 Grünbaum, 1989, Tilings and Patterns Higuchi, 2001, Combinatorial curvature for planar graphs, J. Graph Theory, 38, 220, 10.1002/jgt.10004 Häggström, 2002, Explicit isoperimetric constants and phase transitions in the random-cluster model, Ann. Probab., 30, 443, 10.1214/aop/1020107775 Hua, 2015, Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature, J. Reine Angew. Math., 700, 1, 10.1515/crelle-2013-0015 Hua, 2016, Curvature notions on graphs, Front. Math. China, 11, 1275, 10.1007/s11464-016-0578-z Higuchi, 2003, Isoperimetric constants of (d,f)-regular planar graphs, Interdiscip. Inform. Sci., 9, 221 Hua Imrich, 1975, On Whitney's theorem on the unique embeddability of 3-connected planar graphs, 303 Ishida, 1990, Pseudo-curvature of a graph Keller, 2010, The essential spectrum of the Laplacian on rapidly branching tessellations, Math. Ann., 346, 51, 10.1007/s00208-009-0384-y Keller, 2011, Curvature, geometry and spectral properties of planar graphs, Discrete Comput. Geom., 46, 500, 10.1007/s00454-011-9333-0 Kroto, 1985, Nature, 318, 162, 10.1038/318162a0 Keller, 2011, Cheeger constants, growth and spectrum of locally tessellating planar graphs, Math. Z., 268, 871, 10.1007/s00209-010-0699-0 Lawrencenko, 2002, Isoperimetric constants of infinite plane graphs, Discrete Comput. Geom., 28, 313, 10.1007/s00454-002-0694-2 Mani, 1971, Automorphismen von polyedrischen Graphen, Math. Ann., 192, 279, 10.1007/BF02075357 Mohar, 1988, Embeddings of infinite graphs, J. Combin. Theory Ser. B, 44, 29, 10.1016/0095-8956(88)90094-9 Mohar, 2002, Light structures in infinite planar graphs without the strong isoperimetric property, Trans. Amer. Math. Soc., 354, 3059, 10.1090/S0002-9947-02-03004-0 Nevanlinna, 1970, Analytic Functions, vol. 162 Nicholson, 2011, New graphs with thinly spread positive combinatorial curvature, New Zealand J. Math., 41, 39 Oh, 2017, On the number of vertices of positively curved planar graphs, Discrete Math., 340, 1300, 10.1016/j.disc.2017.01.025 Oldridge Réti, 2005, On the polyhedral graphs with positive combinatorial curvature, Acta Polytech. Hung., 2, 19 Robertson, 1997, The four-colour theorem, J. Combin. Theory Ser. B, 70, 2, 10.1006/jctb.1997.1750 Servatius, 1998, Symmetry, automorphisms, and self-duality of infinite planar graphs and tilings, 83 Stone, 1976, A combinatorial analogue of a theorem of Myers, Illinois J. Math., 20, 12, 10.1215/ijm/1256050156 Sun, 2004, Positively curved cubic plane graphs are finite, J. Graph Theory, 47, 241, 10.1002/jgt.20026 Thomassen, 1982, Duality of infinite graphs, J. Combin. Theory Ser. B, 33, 137, 10.1016/0095-8956(82)90064-8 Thurston, 1998, Shapes of polyhedra and triangulations of the sphere, vol. 1, 511 Whitney, 1933, 2-isomorphic graphs, Amer. J. Math., 55, 245, 10.2307/2371127 Woess, 1998, A note on tilings and strong isoperimetric inequality, Math. Proc. Cambridge Philos. Soc., 124, 385, 10.1017/S0305004197002429 Żuk, 1997, On the norms of the random walks on planar graphs, Ann. Inst. Fourier (Grenoble), 47, 1463, 10.5802/aif.1606 Zhang, 2008, A result on combinatorial curvature for embedded graphs on a surface, Discrete Math., 308, 6588, 10.1016/j.disc.2007.11.007