The set of vertices with positive curvature in a planar graph with nonnegative curvature
Tài liệu tham khảo
Appel, 1977, Every planar map is four colorable. I. Discharging, Illinois J. Math., 21, 429
Alexandrov, 2005, Convex Polyhedra
Babai, 1975, Automorphism groups of planar graphs. II, Colloq. Math. Soc. János Bolyai, 10, 29
Burago, 2001, A Course in Metric Geometry, vol. 33
Brinkmann, 1997, A constructive enumeration of fullerenes, J. Algorithms, 23, 345, 10.1006/jagm.1996.0806
Buchstaber, 2017, Finite sets of operations sufficient to construct any fullerene from C20, Struct. Chem., 28, 225, 10.1007/s11224-016-0885-8
Buchstaber, 2017, Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes, Izv. Ross. Akad. Nauk Ser. Mat., 81, 15
Brinkmann, 2012, The generation of fullerenes, J. Chem. Inf. Model., 52, 2910, 10.1021/ci3003107
Baues, 2001, Curvature and geometry of tessellating plane graphs, Discrete Comput. Geom., 25, 141, 10.1007/s004540010076
Baues, 2006, Geodesics in non-positively curved plane tessellations, Adv. Geom., 6, 243, 10.1515/ADVGEOM.2006.014
Conway, 2008
Chen, 2008, Gauss–Bonnet formula, finiteness condition, and characterizations of graphs embedded in surfaces, Graphs Combin., 24, 159, 10.1007/s00373-008-0782-z
Chen, 2009, The Gauss–Bonnet formula of polytopal manifolds and the characterization of embedded graphs with nonnegative curvature, Proc. Amer. Math. Soc., 137, 1601, 10.1090/S0002-9939-08-09739-6
DeVos, 2007, An analogue of the Descartes–Euler formula for infinite graphs and Higuchi's conjecture, Trans. Amer. Math. Soc., 359, 3287, 10.1090/S0002-9947-07-04125-6
Galebach
Ghidelli
Gromov, 1987, Hyperbolic groups, vol. 8, 75
Grünbaum, 1989, Tilings and Patterns
Higuchi, 2001, Combinatorial curvature for planar graphs, J. Graph Theory, 38, 220, 10.1002/jgt.10004
Häggström, 2002, Explicit isoperimetric constants and phase transitions in the random-cluster model, Ann. Probab., 30, 443, 10.1214/aop/1020107775
Hua, 2015, Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature, J. Reine Angew. Math., 700, 1, 10.1515/crelle-2013-0015
Hua, 2016, Curvature notions on graphs, Front. Math. China, 11, 1275, 10.1007/s11464-016-0578-z
Higuchi, 2003, Isoperimetric constants of (d,f)-regular planar graphs, Interdiscip. Inform. Sci., 9, 221
Hua
Imrich, 1975, On Whitney's theorem on the unique embeddability of 3-connected planar graphs, 303
Ishida, 1990, Pseudo-curvature of a graph
Keller, 2010, The essential spectrum of the Laplacian on rapidly branching tessellations, Math. Ann., 346, 51, 10.1007/s00208-009-0384-y
Keller, 2011, Curvature, geometry and spectral properties of planar graphs, Discrete Comput. Geom., 46, 500, 10.1007/s00454-011-9333-0
Kroto, 1985, Nature, 318, 162, 10.1038/318162a0
Keller, 2011, Cheeger constants, growth and spectrum of locally tessellating planar graphs, Math. Z., 268, 871, 10.1007/s00209-010-0699-0
Lawrencenko, 2002, Isoperimetric constants of infinite plane graphs, Discrete Comput. Geom., 28, 313, 10.1007/s00454-002-0694-2
Mani, 1971, Automorphismen von polyedrischen Graphen, Math. Ann., 192, 279, 10.1007/BF02075357
Mohar, 1988, Embeddings of infinite graphs, J. Combin. Theory Ser. B, 44, 29, 10.1016/0095-8956(88)90094-9
Mohar, 2002, Light structures in infinite planar graphs without the strong isoperimetric property, Trans. Amer. Math. Soc., 354, 3059, 10.1090/S0002-9947-02-03004-0
Nevanlinna, 1970, Analytic Functions, vol. 162
Nicholson, 2011, New graphs with thinly spread positive combinatorial curvature, New Zealand J. Math., 41, 39
Oh, 2017, On the number of vertices of positively curved planar graphs, Discrete Math., 340, 1300, 10.1016/j.disc.2017.01.025
Oldridge
Réti, 2005, On the polyhedral graphs with positive combinatorial curvature, Acta Polytech. Hung., 2, 19
Robertson, 1997, The four-colour theorem, J. Combin. Theory Ser. B, 70, 2, 10.1006/jctb.1997.1750
Servatius, 1998, Symmetry, automorphisms, and self-duality of infinite planar graphs and tilings, 83
Stone, 1976, A combinatorial analogue of a theorem of Myers, Illinois J. Math., 20, 12, 10.1215/ijm/1256050156
Sun, 2004, Positively curved cubic plane graphs are finite, J. Graph Theory, 47, 241, 10.1002/jgt.20026
Thomassen, 1982, Duality of infinite graphs, J. Combin. Theory Ser. B, 33, 137, 10.1016/0095-8956(82)90064-8
Thurston, 1998, Shapes of polyhedra and triangulations of the sphere, vol. 1, 511
Whitney, 1933, 2-isomorphic graphs, Amer. J. Math., 55, 245, 10.2307/2371127
Woess, 1998, A note on tilings and strong isoperimetric inequality, Math. Proc. Cambridge Philos. Soc., 124, 385, 10.1017/S0305004197002429
Żuk, 1997, On the norms of the random walks on planar graphs, Ann. Inst. Fourier (Grenoble), 47, 1463, 10.5802/aif.1606
Zhang, 2008, A result on combinatorial curvature for embedded graphs on a surface, Discrete Math., 308, 6588, 10.1016/j.disc.2007.11.007