The separation problem of rounded capacity inequalities: Some polynomial cases

Discrete Optimization - Tập 23 - Trang 33-55 - 2017
Ibrahima Diarrassouba1
1Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, 76600 Le Havre, France

Tài liệu tham khảo

Diarrassouba, 2016 Baldacci, 2012, Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints, European J. Oper. Res., 218, 1, 10.1016/j.ejor.2011.07.037 Cordeau, 2007, vol. 14 Letchford, 2015, Stronger multi-commodity flow formulations of the capacitated vehicle routing problem, European J. Oper. Res., 244, 730, 10.1016/j.ejor.2015.02.028 Toth, 2002, vol. 9 Toth, 2014 Archetti, 2005, Complexity and reducibility of the skip delivery problem, Transp. Sci., 39, 182, 10.1287/trsc.1030.0084 Lysgaard, 2004, A new branch-and-cut algorithm for the capacitated vehicle routing problem, Math. Program. Ser. A, 100, 423, 10.1007/s10107-003-0481-8 Ralphs, 2003, On the capacitated vehicle routing problem, Math. Program., 94, 343, 10.1007/s10107-002-0323-0 Wolsey, 1998 Augerat, 1998, Separating capacity constraints for the CVRP using tabu search, European J. Oper. Res., 106, 546, 10.1016/S0377-2217(97)00290-7 McCormick, 2003, Easy and difficult objective functions for max cut, Math. Program. B, 94, 459, 10.1007/s10107-002-0328-8 Naddef, 2002, Branch-and-cut algorithms for the capacitated VRP, vol. 2002, 53 Diarrassouba, 2016, Two node-disjoint hop-constrained survivable network design and polyhedra, Networks, 67, 316, 10.1002/net.21679 Huygens, 2007, The two-edge connected hop-constrained network design problem: Valid inequalities and branch-and-cut, Networks, 49, 116, 10.1002/net.20146 Fouilhoux, 2014, A branch-and-cut for the non-disjoint m-ring-star problem, RAIRO-Oper. Res., 48, 167, 10.1051/ro/2014006 Goemans, 1995, Minimizing submodular functions families of sets, Combinatorica, 15, 499, 10.1007/BF01192523 McCormick, 2005, vol. 12, 321 Grotschel, 1984, Corregendum to our paper the ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 4, 291, 10.1007/BF02579139 Grotschel, 1988 Goldberg, 1988, A new approach to the maximum flow problem, J. ACM, 35, 921, 10.1145/48014.61051 Letchford, 2004, vol. 3064, 196