The second Hankel determinant for alpha-convex functions

Janusz Sokół1, D. K. Thomas2
1Faculty of Mathematics and Natural Sciences, University of Rzeszów, Rzeszów, Poland
2Department of Mathematics, Swansea University, Swansea, United Kingdom

Tóm tắt

Từ khóa


Tài liệu tham khảo

N.E. Cho, B. Kowalczyk, O.S. Kwon, A. Lecko, and Y.J. Sim, The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc. (2), 41(1):523–535, 2018.

V.K. Deekonda and R. Thoutreddy, An upper bound to the second Hankel determinant for functions in Mocanu class, Vietnam J. Math., 43(3):541–549, 2015.

A. Janteng, S.A. Halim, and M. Darus, Coefficient inequality for function whose derivative has a positive real part, JIPAM, J. Inequal. in Pure Appl. Math., 7(2):50, 2006.

A. Janteng, S.A. Halim, and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1(1):619–625, 2007.

D.V. Krishna and T. Ramreddy, Hankel determinant for starlike and convex functions of order alpha, Tbilisi Math. J., 5(1):65–76, 2012.

P.K. Kulshrestha, Coefficients for alpha-convex univalent functions, Bull. Am. Math. Soc., 80(2):341–342, 1974.

S.K. Lee, V. Ravichandran, and S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013:281, 2013.

R.J. Libera and E.J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Am. Math. Soc., 85(2):225–230, 1982.

M.-S. Liu, J.-F. Xu, and M. Yang, Upper bound of second Hankel determinant for certain subclasses of analytic functions, Abstr. Appl. Anal., 2014:603180, 2014.

A.K. Mishra and P. Gochhayat, Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. Math. Sci., 2008:153280, 2008.

P.T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica, Cluj, 11(34):127–133, 1969.

J.W. Noonan and D.K. Thomas, On the Hankel determinants of areally mean p-valent functions, Proc. Lond. Math. Soc., 25:503–524, 1972.

Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41:111–122, 1966.

Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14:108–112, 1967.

D. Raducanu and P. Zaprawa, Second Hankel determinant for the close-to-convex functions, C. R., Math., Acad. Sci. Paris, 355(10):1063–1071, 2017.

G. Shanmugam, B.A. Stephen, and K.G. Subramanian, Second Hankel determinant for certain classes of analytic functions, Bonfring International Journal of Data Mining, 2(2):57–60, 2012.

G. Shanmugan and B.A. Stephen, Second Hankel determinant for alpha starlike functions, Int. J. Math. Sci. Eng. Appl., 6(5):159–163, 2012.

G. Singh, Hankel determinant for a new subclass of analytic functions, Sci. Magna, 8(4):61–65, 2012.

G. Singh and S. Mehrok, Hankel determinant for analytic functions with respect to other points, Engineering Mathematics Letters, 2(2):115–123, 2013.

P. Zaprawa, Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., 2016:3792367, 2016.